Virtual Fixture (VF) Assistance for Needle Passing and Knot Tying

Zihan Chen, Anand Malpani, Preetham Chalasani, Anton Deguet, S. Swaroop Vedula, Peter Kazanzides and Russell H. Taylor zihan.chen@jhu.edu

Motivation

Suturing is a highly dexterous task in minimally invasive surgery (MIS).

Especially **challenging** for **novice** operators.

User Study: 14 subjects, **better** accuracy, **less** operator workload

Virtual Fixture (VF) Assistance for Needle Passing and Knot Tying

Zihan Chen, Anand Malpani, Preetham Chalasani, Anton Deguet, S. Swaroop Vedula, Peter Kazanzides and Russell H. Taylor

Oct 12, 2016 zihan.chen@jhu.edu

Motivation

Suturing is a highly dexterous task in minimally invasive surgery (MIS).

Especially **challenging** for **novice** operators.

Approach

Use VF assistance to improve operation **accuracy** and reducing operator's mental **stress**.

Contents

- Suturing Task
- Render Haptic Feedback
- VF1: Needle Passing Task
- VF2: Knot Tying Task
- User Study ...

Suturing Task

Why Do We Need VF?

System: Hardware

System: Block Diagram

Fig. 7: Block diagram showing hardware/software connection, software components implemented in both *cisst* and ROS environments

Help User by Providing Haptic Feedback

Master Controller

Impedance Virtual Fixture

```
Master Virtual Fixture Controller
Given
F = [R, \vec{p}]: current pose \dot{p}: current velocity
F_c = [R_c, \vec{p}_c]: position compliance frame with respect to master
\vec{k}^{(+)}, \vec{k}^{(-)}: stiffness gain \vec{b}^{(+)}, \vec{b}^{(-)}: damping gain \vec{q}^{(+)}, \vec{q}^{(-)}: force bias terms
if (Enabled) begin
      \vec{q} = F_c^{-1} \vec{p} = R_c^{-1} (\vec{p} - \vec{p_c}) // position error
      \vec{v} = R_c^{-1} \dot{p} // velocity on compliance frame
      for i \in \{x, y, z\} do
            \{ \text{ if } (\vec{q_i} \le 0) \text{ then } \vec{g_i} = \vec{g_i}^{(-)} + \vec{k_i}^{(-)} \vec{q_i} + \vec{b_i}^{(-)} \vec{v_i} \quad \text{ else } \vec{g_i} = \vec{g_i}^{(+)} + \vec{k_i}^{(+)} \vec{q_i} + \vec{b_i}^{(+)} \vec{v_i} \}
      \vec{f} = R_c \vec{g} // virtual fixture force
end
```

Fig. 5. Master Virtual Fixture Controller

Example Plane VF

Virtual Fixture for Needle Passing Task

Needle Passing: Position

Needle Passing: Bite

Needle Passing

Needle Passing Bite VF

Does it WORK?

Does it WORK?

Fig. 9: Comparison of needle passing trajectories: left is needle trajectory in freehand motion, right is trajectory from the same user with virtual fixture assistance.

Virtual Fixture for Knot Tying Task

Knot Tying VF

Experiments & Results

Adverse Events:

Average number of slips drops from 1.5 in freehand mode to 0.34 with VF. $(F_{1.84} = 28.87, p < 0.01)$

Results: Operator Workload

Fig. 14: Knot Tying Task, NASA TLX survey radar plot of average categorical workload as self-reported by the users. Workloads increase from the center.

Future Work

- New virtual fixtures
- Evaluate effect on learning

Thank You! zihan.chen@jhu.edu

