
Multi-Kilohertz Control of Multiple Robots via IEEE-1394 (Firewire)

Zihan Chen1 and Peter Kazanzides1

Abstract—We present a specialized FireWire protocol that
takes advantage of broadcast messages and peer-to-peer transfers
to minimize the number of transactions, and thus the software
overhead, on the control PC, thereby enabling fast real-time
control. We provide an open source Verilog implementation of
a Link Layer Controller (LLC) that supports this design on an
FPGA-based motor controller. Performance is measured on a
da Vinci R© Research Kit that contains 8 of these controllers to
drive 28 axes. Compared to a conventional asynchronous transfer-
based solution, this protocol decreases the I/O time by more than
a factor of 4. This performance gain can be used to increase
the control frequency to 6kHz, scale to a larger number of axes,
or provide greater tolerance to timing variations due to a non-
real-time operating system, such as the standard Linux kernel.

I. INTRODUCTION

Robot control can be divided into three main actions: (1)
getting data (input), (2) processing data (computation) and (3)
delivering data (output); this implies two fundamental needs:
I/O and computation. It is often implemented as a hierarchical
multi-rate control architecture, where a (possibly distributed)
low-level controller implements high-frequency control of the
position, velocity, or torque of individual joints. There are
one or more higher levels of control that introduce more
sophisticated capabilities and ultimately produce a stream of
setpoints to the low-level controller. This paper focuses on
the I/O performance between the low-level controller and the
electronics that interface to the physical world.

The fastest I/O is achieved when these devices are in-
terfaced directly with the microprocessor that performs the
computation. Thus, it is common to find a distributed com-
putation and I/O architecture (Fig. 1a), where the low-level
control is performed on an embedded system that contains
a microprocessor and I/O devices. The high-level control is
typically performed on a conventional computation platform,
such as a PC, that is connected to one or more embedded
controllers via a high-speed network, such as Ethernet, USB,
IEEE-1394, or CAN. An alternative approach is to perform all
control computations on a PC, often with a real-time operating
system. In this case, one can adopt a centralized computation
and I/O architecture (Fig. 1b), where the electrical interfaces
are provided by I/O boards that are installed inside the PC
and interface via its high-speed internal bus (originally ISA,
now PCI or PCIe). One advantage of this architecture is that
the entire control system can be implemented on a familiar
development platform (PC), rather than requiring expertise in
embedded systems programming. The disadvantage, however,
is that a significant amount of cabling is required to connect the
robot sensors and actuators to the electrical interfaces inside
the PC. This can reduce reliability, increase signal noise, and

*This work was supported by NASA NNX10AD17A and NSF NRI 1208540
1Zihan Chen and Peter Kazanzides are with the Dept. of Computer Science,

Johns Hopkins University, Baltimore, MD, USA. P. Kazanzides can be reached
at pkaz@jhu.edu.

High-level
control

Low-level
control

Electrical
I/O

Robot
Hardware

High-level
control

Low-level
control

Electrical
I/O

Robot
Hardware

High-level
control

Low-level
control

Electrical
I/O

Robot
Hardware

a) Distributed computation and I/O

b) Centralized computation and I/O

c) Centralized computation and distributed I/O

PC EmbeddedNOTE:

Fig. 1. Three common architectures for robot control. This paper focuses
on centralized computation and distributed I/O using IEEE-1394 (FireWire)
between the low-level control and electrical I/O.

make reconfiguration difficult, especially if it is necessary to
open the PC chassis.

While distributed computation and I/O remains an excel-
lent choice, within the research community there is increased
interest in a centralized computation and distributed I/O archi-
tecture (Fig. 1c) because it provides the benefits of a familiar
development environment (all control is implemented on the
PC) as well as robust cabling (I/O is performed by hardware
connected to the PC via a high-speed network) [1]. Because the
network is inside the low-level control loop, it must provide
high bandwidth and low latency. This has been difficult to
achieve with conventional networks such as Ethernet and
USB, so in 2006 we began to investigate alternatives and
selected IEEE-1394 (FireWire). In 2008, we reported results
from our first FireWire-based design, which included an FPGA
implementation of the link layer[1]. We note that others have
developed FireWire-based protocols for specific application
areas. For example, SAE AS5643 [2] is designed for military
and avionic applications and focuses on bus determinism and
safety features, rather than high update rates (its typical update
rate is around 100 Hz). Today, the centralized computation and
distributed I/O architecture is most commonly implemented
using EtherCAT [3], which was first demonstrated in 2003. We
did not select EtherCAT because, at that time (2006-2008), it
was not clear whether it would be widely accepted (considering
also competing efforts, such as PowerLink) and we determined
that it was much easier to implement the FireWire link layer
in an FPGA, especially given the ample documentation [4].

We contend, however, that IEEE-1394 remains a viable
alternative to EtherCAT and, in this paper, introduce a com-
munication protocol that provides similar performance. We
demonstrate this in an “open source mechatronics” system,
where we achieve a closed-loop control rate of 6 kHz for the
28 axes of a da Vinci Research Kit [5] (see Fig. 2). We further
highlight some of the relative advantages of disadvantages of
IEEE-1394 and EtherCAT.

978-1-4799-4605-1/14/$31.00 ©2014 IEEE

da Vinci Patient Side
Manipulators (PSMs)

Stereo Viewer

IEEE-1394 controllers (4
enclosures with 8 nodes) Footpedal Tray

da Vinci Master Tool
Manipulators (MTMs)

Control PC

Fig. 2. Research da Vinci System at JHU: two 7-dof Master Tool Manipu-
lators (MTMs) and two 7-dof Patient Side Manipulators (PSMs), for a total
of 28 axes, controlled by eight IEEE-1394 nodes (packaged in 4 enclosures),
each consisting of an IEEE-1394 FPGA board mated with a Quad Linear
Amplifier (QLA).

II. SYSTEM OVERVIEW

This section gives an overview of the system architecture,
reviews the FireWire transaction types, analyzes their perfor-
mance, and shows the performance bottleneck that can result
from scaling to a robotic system with 28 axes.

A. Open Source Mechatronics

Fig. 3. IEEE-1394 FPGA board and Quad Linear Amplifier (QLA)

Our FireWire-based controller, shown in Fig. 3, is a
complete open source design, with the schematics, lay-
out, and FPGA firmware (Verilog) available at http://jhu-
cisst.github.io/mechatronics. The controller consists of two
boards, an IEEE-1394 FPGA board and a Quad Linear Ampli-
fier (QLA), that are mated via two 44-pin connectors. Most of
the 88 signals are connected directly to I/O pins on the Xilinx
Spartan-6 XC6SLX45 FPGA; the rest are used for power
(+3.3V, +5V) and ground. This design allows researchers to
create alternate I/O boards (to replace the QLA) to satisfy
different hardware requirements, or to design a new FPGA
board to introduce a different communication network. This
is a general-purpose mechatronics system, but currently its
primary application is to control research systems based on the
mechanical components of the first-generation da Vinci R© Sur-
gical System [6], [5], as shown in Fig. 2. The low-level
control software is implemented on a Linux PC, which is
connected via a daisy-chain to several FPGA-QLA board sets,
as illustrated in Fig. 4. This controller has been replicated
at 10 institutions, producing a research community around a
common hardware and software platform.

Fig. 4. Hardware architecture: one control PC and 8 IEEE-1394 FPGA/QLA
board sets controlling the 4 da Vinci manipulators (7 DOF each).

B. Introduction to IEEE 1394

The IEEE-1394 interface is [7] a high-speed peer-to-peer,
full-duplex fieldbus with low overhead that is well suited
for real-time control applications. It is a Control and Status
Register (CSR) architecture with a tree-like topology that
supports up to 64 nodes on a single bus. The IEEE-1394a
physical medium transmits data at a speed up to 400 Mbits/sec.
In later specifications (IEEE-1394b), the bus can support data
transfers of 800 Mbits/sec and even up to 3.2 Gbits/sec.

FireWire supports two types of transactions: asynchronous
and isochronous. It operates based on a 125 µs bus cycle
(8 kHz), which is triggered by a cycle start packet followed
by an isochronous period and then an asynchronous period.
An isochronous transaction running at 8 kHz has a reserved
bandwidth, and can only happen within the isochronous period.
It uses a channel number to address its target nodes and
requires no acknowledgement or response packet. Despite
its high frequency, isochronous transfer has no guarantee of
data delivery and can suffer from cycle start packet time
drifting. This makes it a natural choice for video and au-
dio streaming applications, rather than for real time control.
Asynchronous transactions can only occur in the asynchronous
phase after isochronous transactions have completed. Unlike
the isochronous transactions, asynchronous transactions use
a 64-bit address for data transfer. The whole FireWire bus
network can be mapped into the 64-bit address space, with
10 bits for the bus number, 6 bits for the node number and
48 bits for the node address. An asynchronous transaction is
designed to be error free by requiring an acknowledgment
packet for each data transmission and a response packet for
every asynchronous request. Often it is split into two sub-
transactions: a request and a response, allowing other trans-
missions in between. Asynchronous transactions are typically
used for control commands and reliable message transmission.

For our control applications, we chose to use asynchronous
transmissions, initiated by the PC, to fetch and send data
from and to the FPGA boards. Furthermore, for efficiency
considerations, asynchronous transactions are implemented as
concatenated transactions, where the acknowlegment packet
and response packet (if a read transaction) are sent back to the
requesting node without releasing the bus. Compared to split
transactions, this eliminates the need for the responding node
to wait for the subaction gap (at least 5 to 10 µs) and negotiate
for bus access. This design has been implemented, tested and
used for several robot systems, including a snake-like robot
[8] and the da Vinci Research Kit [6], [5]. The following
section presents experimental data to assess the performance
of the FireWire transaction types, which guides the design of
a protocol to achieve higher control performance.

Cycle N (125 us)

Cycle
N-1

Cycle
N+1

Cycle
Start Ch0 Ch1 ChN Async Async

Isochronous Period Asynchronous
Period

Cycle Start Isochronous Asynchronous (Packets)

Fig. 5. IEEE-1394 cycle with isochronous and asynchronous transactions

C. System Performance

This subsection presents the performance measurement of
concatenated asynchronous read/write transactions, analyzes
I/O versus computation ratio in a servo control loop, and
reveals the bottleneck of achieving better control timing perfor-
mance. All the data is collected on a Linux PC (FireWire chip
Ricoh R5C832) with a 3.2.0-49-generic kernel, Juju FireWire
driver stack, and libraw1394 API library. Timing data is
queried using the gettimeofday function.

Fig. 6 shows the time required for asynchronous block read
and write transactions initiated by the PC software, each based
on 5,000 iterations. The read and write payload sizes are 48
and 16 bytes, respectively, which match the payloads used for
the FPGA-QLA board set. Mean read and write times are 31.99
and 33.74 µs, with standard deviations of 12.02 and 8.56 µs,
respectively. Thanks to our concatenated implementation, the
measured data is only half the value (around 60 µs, depending
on the kernel) reported in [9].

The most straightforward protocol is to perform one asyn-
chronous read (to obtain feedback data) and one asynchronous
write (to send control output) to each FPGA board in each
servo control loop. In this case, the total mean I/O time for a
robot system with Nboards FPGA boards would be:

TI/O = (Tr + Tw)×Nboards, (1)

where Tr and Tw are the mean asynchronous read and write
times, respectively. For a da Vinci Research Kit with eight
FPGA boards, the computed I/O time cost is (32.22+34.13)×
8 = 531.12 µs. This number is consistent with data collected
experimentally, which has a mean time of 495.98 µs and stan-
dard deviation of 75.45 µs. Because servo loop computation
time TC is very low (less than 40 µs for an 8-board system),
I/O time often takes over 90% of the minimum control period
(Tc + TI/O) and more than 50% of a 1 kHz control loop.
This means that I/O performance is the bottleneck and would
make it difficult to: (1) control a more advanced system (e.g.,
a system with 16 FPGA boards) with a 1 kHz servo loop, or
(2) control an 8 board da Vinci system at frequencies greater
than about 1.8 kHz.

D. Analysis

Figure 7 shows each step in an asynchronous read trans-
action, starting from the call to the libraw1394 API function
raw1394 read to the return of this function call. The average
32 µs transaction time is comprised of two operating system
calls, two data transmission times, and data processing time
on the FPGA. We are able to measure the data transmission
and data processing time in the FPGA, which is less than 5
µs. This implies that the latency is mainly due to software

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

800

900

It
e

ra
ti
o

n
 (

c
o

u
n

ts
)

IEEE 1394 Block Read Times

Read Time (us)

Avg = 31.99 us
Std = 12.02 us
Max = 527.50 us

(a) Asynchronous Block Read

0 50 100 150 200 250 300 350
0

100

200

300

400

500

600

700

800

900

It
e

ra
ti
o

n
 (

c
o

u
n

ts
)

IEEE 1394 Block Write Times

Write Time (us)

Avg = 33.74 us
Std = 8.56 us
Max = 300.50 us

(b) Asynchronous Block Write

Fig. 6. Asynchronous block read and write times (400 Mbps)

overhead in the operating system. An obvious inference is that
in order to improve the I/O performance, the best approach is to
reduce the total number of transactions initiated by the control
PC. This insight guides us to use an asynchronous broadcast
transaction-based solution, where we compensate for the lack
of acknowledgment packets by embedding an acknowledgment
(actually, a sequence number) in the packets sent from the
FPGAs to the PC.

Requester
PC

Responder
FPGA

Start read

OS latency

Read request packet On-the-fly
Processing

Transmitting
ResponseRead response packet

OS latency

End read

Transmitting
Request

Fig. 7. IEEE-1394 asynchronous block read includes two operating system
(OS) calls, data transmission time, and data processing time

III. BROADCAST COMMUNICATION PROTOCOL

This section presents the newly designed high-performance
communication model, including several optimizations to fur-
ther improve performance, and discusses system characteris-
tics, including determinism and system integrity.

A. Transmission model

As shown in Fig. 8, a servo control cycle starts with an
asynchronous broadcast quadlet write packet from the PC,
serving as query (or sync) command to all FPGA boards. After
sending this packet, the PC software sleeps for 5µs×Nboards.
Upon receipt of this packet, each FPGA board will wait for
a predefined offset (5µs × NodeID), then transmit its status
data using an asynchronous broadcast block write packet. This
is a Time Division Multiple Access (TDMA) method, similar
to the isochronous transfers already present in the IEEE-
1394 specification, but scheduled with respect to the query
command, which can have an arbitrarily specified frequency.
All broadcast packets are received and cached by every FPGA
node, so that all nodes maintain a copy of the entire robot status
feedback. Upon awakening, the PC sends one asynchronous
block read request to any node to fetch this information. This
node can be called a hub node, though it is important to note
that any FPGA node can serve this function. The PC software
then performs the control computations and broadcasts new

command data for all FPGA boards. This completes a servo
control cycle. The key ideas behind this design are to reduce
operating system overhead by cutting the total number of
transactions initiated from the control PC, and to use broadcast
packets to minimize the number of data packets on the bus. In
fact, the number of PC-initiated transactions (3 transactions)
is now independent of the number of FPGA boards (nodes) on
the bus. The I/O time for the broadcast protocol is:

TI/O bc = TQ + 5µs×Nboards + TR + TW , (2)

where TQ, TR and TW are time for query, block read and
command write transactions, respectively.

In theory, the PC could serve as the hub node, but we have
found that this is not a reliable solution. In our experiments,
we detected a 2% packet loss when attempting to use the PC
as a hub node. We hypothesize that this is due to the use
of a software driver to handle asynchronous requests, which
is inherently slower than a hardware-based (FPGA) solution.
We therefore introduced the hub node concept to solve this
problem. By design, all FPGA boards are hub capable and the
PC can read complete status feedback from any FPGA board
on the bus. We note, however, that a real-time kernel, such
as Xenomai, with a real-time FireWire driver [10] could be
another solution to prevent dropped packets.

PC

FPGA 0

FPGA 1

FPGA N

...

Hub
FPGA

1 2

3

PC sends broadcast query packet
FPGA broadcasts status packet in turn
PC reads all FPGA status from Hub FPGA

1 PC sends broadcast packet with command to all FPGAs.

FPGA broadcasts status packet in turn at a fixed offset..
Hub receives and caches all status packets.

2

3 PC reads all FPGA status back using asynchronous block read.

C ComputeW WriteR Read S Sleep Q Query

R C W SSQ SQ ...
Cycle N Cycle N+1

Fig. 8. Asynchronous broadcast based communication model

B. Bus optimizations

While the above protocol greatly improves the performance
of the system, the design incorporates several other optimiza-
tions, as detailed in this section. These particular optimizations
are feasible in a closed system (e.g., where there are no other
nodes on the FireWire bus) and could be omitted if necessary.

Bus arbitration acceleration: Whenever the link layer
controller wants to transmit data to the FireWire bus, it sends
an arbitration request to the physical layer chip and the
physical layer will in turn arbitrate for bus ownership. In the
FireWire specification, the link layer controller can only issue
priority or fair requests for an asynchronous subaction. For
these two types of requests, the physical layer chip starts bus
arbitration after it detects a subaction gap, which nominally
is 10 µs [4]. This subaction gap time limits the overall
performance. But, because the link layer is implemented in
an FPGA, we are able to improve performance by issuing
an isochronous bus request to the physical layer chip, even
though we intend to send an asynchronous packet. In this
case, the physical layer only waits for a 0.04 µs isochronous

gap before starting to arbitrate for the bus. In a standard
FireWire system, this is possible because an isochronous bus
request is only issued when the bus is performing isochronous
transactions. In our design, it works because the time each node
starts transmitting is deterministic (e.g., based on the TDMA
method described above). This mechanism accelerates the bus
arbitration process, improves bus bandwidth usage, and breaks
the limitation of using regular asynchronous transactions. But,
it assumes that we have complete control over the FireWire bus
and can prevent an “outside” node (e.g., a FireWire camera or
hard drive) to interfere with this protocol.

Disable cycle start packet: The cycle start packet is
transmitted from the cycle master node (i.e., PC) on the bus
at 8 kHz to synchronize isochronous data transfers. Because
we do not use isochronous transactions and, more importantly,
to avoid interfering with the broadcast write packets, the cycle
master node capability is disabled and no cycle start packet is
issued on the bus. It is also reported [11] that this optimization
can increase asynchronous transaction performance by 5%.

Full speed broadcast packets: In the standard Linux ker-
nel, the Juju FireWire driver sets the asynchronous broadcast
speed to 100 Mbps. This can be changed to 400 Mbps to
shorten the data transmision time from the PC and yield about
a 4 µs performance gain, at the cost of having to modify and
recompile the FireWire driver source code.

C. System Characteristics

Besides high performance, our design has other system
characteristics that favor a network-connected centralized pro-
cessing and distributed I/O control architecture.

1) Determinism: In a networked control architecture, de-
terminism is beneficial and sometimes even required. This
means that given a certain bus state, the next bus state is
completely determined. This feature is extremely important
when doing control at an extremely high frequency, such as 5
kHz. In our design, the determinism is guaranteed by bringing
optimizations on top of the IEEE-1394a specification and by
not implementing certain functionality in the FPGA FireWire
module. The determinism of the system includes using a fixed
root node (the PC), data transmission synchronization via a
broadcast write packet from the control PC, and pre-configured
bandwidth and offset.

By not implementing the bus manager layer on the FPGA
nodes and not allowing other types of FireWire nodes on the
bus, we can be assured that the control PC is the only node that
can be bus manager, isochronous resource manager, and cycle
master and is therefore forced (by the IEEE-1394 specification)
to be the root node on the bus. This determinism also simplifies
the procedure to stop cycle start packets. By not initiating
asynchronous transactions (the broadcast asynchronous write
packet is considered a “response” to the packet from PC), the
software running on the PC has complete control over what
data, at what time, is on the FireWire bus.

2) Error tolerance: Data integrity is crucial in a robot
control application. This is especially true for a medical robot
that is designed to operate on patients. This is also the reason
we favored regular asynchronous read and write over fast
isochronous transactions in our previous design. For the same

reason, we include three mechanisms to ensure data integrity,
even when using broadcast packets for which there is no ac-
knowledgment packet. The basic feature, a Cyclic Redundancy
Check (CRC), is compulsory as it is specified in the IEEE-1394
standard. This provides a basic error detection mechanism. A
more important feature is to include data integrity information
and a sequence number (16 bits) from the PC write packet
in the “response” broadcast packet from each FPGA. This
feature is a remedy for the lack of an acknowledgment packet
for asynchronous broadcast write packets. In a situation where
the packet from the PC is corrupted or the data is incorrect,
the sequence number in the FPGA packet is set to 0xFFFF;
otherwise the received sequence number is returned. If the PC
software receives a response with sequence number 0xFFFF,
it triggers a software error handling mechanism. Finally, the
FPGA firmware includes a watchdog that needs to be refreshed
by an asynchronous broadcast write packet from the control
PC. This guarantees that in extreme cases (e.g., a software
crash on the PC), the FPGA board will disable the amplifiers
and ensure that there is no power to the robot system.

3) Backward compatibility: The new design greatly im-
proves communication performance between the control PC
and FPGA and retains the support for asynchronous read/write
transactions, thereby remaining backward compatible.

IV. EXPERIMENTS

This section experimentally examines the performance of
the broadcast communication protocol using both the FPGA
board and PC software. The measurement data is compared to
a prior asynchronous protocol described in Section II-C.

A. FPGA hardware-based measurement

With a soft JTAG tool, we captured the data transmission
on the FireWire bus in one complete servo cycle, as shown
in Fig. 9. The blue section of the data bus indicates that its
value is changing and the LLC is either receiving (does not
mean the data is targeted at the FireWire node) or transmitting
data from or to the PHY chip. The counts at the top show the
number of time cycles (clock is 49.125 MHz, 1µs = 49.125
cycles). The cycle starts with a broadcast quadlet packet with
less than 10 cycles. The total time for 8 FPGA boards to
finish data transmission is around 2,000 cycles (40.71 µs), with
each board taking 250 cycles on average (5.1 µs). After these
transactions, an asynchronous read request, indicating the start
of the third phase, has triggered the asynchronous block read
response packet from the hub FPGA node. This asynchronous
read, including the final ACK packet from the control PC,
takes 20 µs. However, this number does not include operating
system latency before the asynchronous read request is sent
out and the latency after the data packet has physically arrived
at the PC hardware. The time between the asynchronous
block read (Async hub packet) and the broadcast block write
(PC Command packet) is PC computation time. Finally, the
broadcast command packet from the PC transmitting at 400
Mbps takes 160 cycles (3.26 µs).

B. PC software-based measurement

While the measurement on the FPGA board is more
accurate, it does not include latencies introduced by the PC

PC Query
packet

Clock counts (49.125 Mhz)
 ctl: 2 bits control pins (LLC-Phy Interface)

 data: 8 bits data pins (LLC-Phy Interface)
 state: state number of FPGA state machine

Node 0
packet

Node 1
packet

... Node 7
packet

Async Hub
packet

PC Command
packet PC Ack

Fig. 9. Waveform of control, data and state bus within one I/O cycle

software, such as the operating system scheduling delay. Thus,
timing data measured from the PC is presented here. The
asynchronous broadcast request is sent out to the FireWire bus
by calling the raw1394 start write function. The time cost
of this function call has been measured with a payload of
144 bytes (8 FPGA boards payload). Fig. 10(a) shows that
the average time cost is 2.51 µs with a standard deviation
of 2.71 µs. Note that this value is only the time cost for
calling the function and does not include, or not fully include,
the transmission time. Compared with a regular asynchronous
block write with a 16 byte payload, the time cost is 90% less,
which is not surprising since the broadcast does not require
an acknowledgment packet and thus saves the time of waiting
for a response. The measured overall I/O time cost for an 8
board robot system is 115.77 µs on average, with 14.51 µs
standard deviation (Fig. 10(b)). The I/O time is only 23% of
the straightforward protocol described in Section II-C, which
uses individual asynchronous read and write transactions to
each FPGA node.

0 20 40 60 80 100 120 140
0

500

1000

1500

2000

2500

3000

It
e

ra
ti
o

n
 (

c
o

u
n

ts
)

IEEE1394 Broadcast Write 8 boards

Broadcast Write Time (us)

Avg = 2.51 us
Std = 2.71 us
Max = 129.00 us

(a) Asynchronous Broadcast Block
Write (128 Bytes)

100 150 200 250 300 350 400 450 500 550 600
0

50

100

150

200

250

300

350

400

450

500

It
e

ra
ti
o

n
 (

c
o

u
n

ts
)

Hub 8 FPGA Boards System Times

I/O Time (us)

Avg = 115.77 us
Std = 14.51 us
Max = 573.00 us

(b) I/O cycle time for new design

Fig. 10. Broadcast write transaction time and I/O time for 8 board system
using new communication model

C. Measurements with da Vinci Research Kit

We experimentally compared the broadcast protocol and
the prior asynchronous protocol using test setups with 2
boards, 4 boards and 8 boards. As shown in Fig. 11, the broad-
cast protocol shows a huge performance increase, especially
for a system with many nodes. Using the broadcast protocol,
we are able to run a da Vinci system with 8 boards at 6 kHz.

V. DISCUSSION: FIREWIRE VS. ETHERCAT

We selected FireWire in 2006, but the obvious question
is whether this is still a good choice today, given the wider
deployment of other fieldbus systems, particularly EtherCAT
[12]. Similar to the FireWire broadcast protocol, EtherCAT is
a link layer level protocol and requires special slave controllers
(any Ethernet port, with special software, can be used for the
master). Fig. 12 shows an example EtherCAT system with one
master node and several slave nodes. The EtherCAT frame

2 4 8
0

100

200

400

600

800

Number of Boards

M
ea

n
I/O

 T
im

e
(u

s)

Broadcast vs. Asynchronous Protocol

I/O time for broadcast protocol
I/O time for asynchronous protocol

Fig. 11. Mean I/O time comparison between Broadcast and Asynchronous
protocols on system with 2, 4 and 8 boards

initiated by the master is passed through the next slave node,
which processes data on-the-fly, until it reaches the end of
the chain and is sent back to the master. This protocol also
minimizes the number of transactions on the master node,
which typically is a conventional computing platform and
therefore subject to software-induced latency.

Slave N
PC

Slave 1

DPRAM

Slave 2

DPRAM DPRAM
...

Fig. 12. An example EtherCAT system

There are several obvious benefits to using EtherCAT: (1)
while many computers have a FireWire port, it is not as
ubiquitous as an Ethernet port; (2) EtherCAT uses standard
Ethernet cables, which are more easily routed inside a robot
mechanism (with an option for high-flex cables) and can be
longer than FireWire cables; and (3) there are more vendors
providing control components with EtherCAT interfaces.

Both FireWire and EtherCAT can provide sufficient perfor-
mance for high-rate control. FireWire has a higher bus band-
with (400 Mbits/s for IEEE-1394a and typically 800 Mbits/s
for IEEE-1394b) compared to EtherCAT, which is limited to
100 Mbits/s, but this is not likely to be the limiting factor. Since
we do not have access to EtherCAT hardware, we estimated
the I/O cycle time based on [13]. For an 8 board system, with
a payload of 64 bytes per board, the estimated time would be
50 µs. However, this is an ideal time that does not consider
operating system overhead and other implementation issues.
Under these ideal conditions the proposed FireWire protocol
would provide similar performance. For a real EtherCAT
system, Potra et al. [14] reported a 200 µs cycle time for
controlling 32 digital signals, which is comparable to the real
system times we have measured.

At this point, we can identify a few advantages of our
FireWire system: (1) it is easier to dynamically reconfigure
FireWire systems by connecting and disconnecting nodes, as
compared to the configuration tools and files required for
EtherCAT systems; and (2) it is completely open source and
therefore simple and inexpensive for researchers to implement
custom slave nodes or to customize the protocol. As an
example, since we use broadcast to transmit status data from
the FPGA, all FPGA nodes can receive these packets and have
information about the whole robot system. Besides allowing

any FPGA node to act as the Hub, this is potentially valuable in
a multivariable control system. Another use of this information
is to provide an extra safety feature (e.g., power shutdown if
another FPGA node fails).

VI. CONCLUSION

Our analysis of the original control system I/O performance
revealed that latency due to PC operating system overhead was
the primary cause of the I/O performance bottleneck, which led
us to a series of bus optimizations and a new communication
protocol. This new approach reduces the number of PC-
initiated transactions to three by using broadcast packets and
enabling all FPGA controller boards to cache status packets
from all other controller boards, thereby enabling any of them
to act as a Hub node. Experimental results show that the new
approach cuts the average I/O cycle time to 115.77 µs. This
indicates that for an eight board system, a control rate of 6 kHz
is achievable. The new design also shows very good scalability
because adding one FPGA board only requires an additional 5
µs of I/O time. This IEEE-1394 based communication model
provides a solution to control multiple robots at multi-kilohertz
servo loop frequencies.

REFERENCES

[1] P. Kazanzides and P. Thienphrapa, “Centralized processing and dis-
tributed I/O for robot control,” in Technologies for Practical Robot
Applications (TePRA), Woburn, MA, Nov 2008, pp. 84–88.

[2] H. Bai, “Analysis of a SAE AS5643 Mil-1394b based high-speed
avionics network architecture for space and defense applications,” in
IEEE Aerospace Conf., Big Sky, MT, Mar 2007, pp. 1–9.

[3] EtherCAT Technology Group, http://www.ethercat.org/.
[4] D. Anderson, FireWire System Architecture, 2nd Edition. MindShare,

Inc., Addison-Wesley, 1999.
[5] P. Kazanzides, Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor, and

S. DiMaio, “An open-source research kit for the da Vinci R© surgical
robot,” in IEEE Intl. Conf. on Robotics and Auto. (ICRA), May 2014.

[6] Z. Chen, A. Deguet, R. Taylor, S. DiMaio, G. Fischer, and
P. Kazanzides, “An open-source hardware and software platform for
telesurgical robot research,” in MICCAI Workshop on Systems and Arch.
for Computer Assisted Interventions, Sep 2013.

[7] IEEE-1394 Working Group, “IEEE Standard for a High Performance
Serial Bus and Amendments,” IEEE Std 1394-1995, 1996.

[8] P. Thienphrapa and P. Kazanzides, “A distributed I/O low-level con-
troller for highly-dexterous snake robots,” in IEEE Biomedical Circuits
and Systems Conf. (BioCAS), Baltimore, MD, Nov 2008, pp. 9–12.

[9] M. Sarker, C. Kim, J. Cho, and B. You, “Development of a network-
based real-time robot control system over IEEE 1394: using open source
software platform,” in IEEE Intl. Conf. on Mechatronics, Jul 2006, pp.
563–568.

[10] Y. Zhang, B. Orlic, P. Visser, and J. Broenink, “Hard real-time net-
working on firewire,” in 7th Real-Time Linux Workshop, P. Marquet,
N. McGuire, and P. Wurmsdobler, Eds. Eindhoven, the Netherlands:
IOP Press, 2005, pp. 1–8.

[11] Trade Association and others, “FirewireTM reference tutorial,” 1394
Trade Association, Tech. Rep., 2010.

[12] S. G. Robertz, R. Henriksson, K. Nilsson, A. Blomdell, and I. Tarasov,
“Using real-time Java for industrial robot control,” in Proc. 5th ACM
Intl. Workshop on Java technologies for real-time and embedded systems
(JTRES), Vienna, Austria, 2007, pp. 104–110.

[13] G. Prytz, “A performance analysis of EtherCAT and PROFINET IRT,”
in IEEE Intl. Conf. on Emerging Technologies and Factory Automation
(ETFA), Hamburg, Germany, Sep 2008, pp. 408–415.

[14] S. Potra and G. Sebestyen, “EtherCAT protocol implementation issues
on an embedded Linux platform,” in IEEE Intl. Conf. on Auto., Quality
and Testing, Robotics, Los Alamitos, CA, May 2006, pp. 420–425.

