MODULAR INTEROPERABILITY IN SURGICAL ROBOTICS SOFTWARE
Kazanzides, Peter;Deguet, Anton;Vacvolgyi, Balazs,Chen, Zihan; Taylor, Russell H
Mechanical Engineering; Sep 2015; 137, 9; ProQuest Central

pg. S19

Focus on DYNAMIC SYSTEMS B CoNTROL

MODULAR

INTEROPERABILITY IN
SURGICAL ROBOTICS

BY PETER KAZAKZIDES
RESEARCH PROFESSOR

Anvon DEcUET
Ass0ctaTE RESERRCH SCIENTIST

Batazs VAGvaLe:
RSSOCIATE RESEARCH SCIENTISY

ZIkaN CHEN
Pl CANDIDATE

RussELL . TAVLOR

SOFTWARE

omputers have been used to assist medical diagnosis and
treatment for decades; early examples include computer-
assisted tomography (CAT or CT) and stereotactic neuro-
surgery. While computers can only provide information

to guide a surgeon, the introduction of robotics enables
computers to physically act on the patient, either directly

or by providing mechanical assistance to the surgeon. For example,
in stereotactic neurosurgery, the location of a suspected tumor is
identified in a three dimensional (3D) CT scan of a patient’s brain.
Initially, passive stereotactic frames were used to position a guide
for a biopsy needle based on the 3D coordinates of the suspected
tumor. In 1985, a robot was used to position the needle guide [1],
representing the first reported clinical use of a robot. In the early
1990s, robots were introduced for invasive surgical procedures, such

PROFESSOR as transurethral resection of the prostate (TURP) [2] and total hip
replacement (THR) surgery [3]; in both of these cases, the robot
[DEFRRTMENT OF autonomously performed part of the surgical procedure.
[OMPUTER SEIENCE Today, the da Vinci Surgical System (Intuitive Surgical, Sunnyvale, CA) is the most widely
’ used surgical robot, with 3,266 installation ding to the company’s 2014 Annual Report.
JoKNS HORKINS UNIvERSHTY The da Vinci s used for minimally-invasive surgery, especially in urologic and gynecologh

applications, but is currently limited to teleoperated control, where the surgeon sits at a master
console and controls instruments inserted into the patient’s body through small incisions,
called ports, Stereo visualization is provided by a stereo endoscope (also robotically controlled)
inserted through one of the ports.

Recently, some common reseatch platforms have emerged. The da Vinci Research Kit
(dVRK) [4] is a research system based on the mechanical p ts of the first- ation
da Vinci Surgical System. Another common platform is provided by the Raven II surgical robot
(Applied Dexterity, Inc., Seattle, WA) [5], which is functionally similar to the da Vinci Patient
Side Manipulator (PSM).

The focus of this article is on modular interoperability of the software that is used for these
types of systems. This is important for several reasons. First, surgical robots are not just robots,
but rather integrated systems that typically incorporate other sources of information. This
includes static information, such as preoperative images or models, and real-time information

SEPTEMBER 2015 19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

such as mono or stereo computer vision, ultrasound, optical coherence tomography
(OCT), fluoroscopy (x-ray), tissue properties, external forces, and user (surgeon)
input. There is no single software package that can provide all these capabilities and
few, if any, researchers have expertise in all of them. Thus, it is necessary to have
modular interfaces to enable interoperability between the different software packages
that incorporate the state-of-the-art knowledge and capabilities in each area. Second,
even within robotics, there is a need for interoperability between systems. For
example, the da Vinci Console (stereo display and master manipulators) could be
used to teleoperate other robots, including the Raven II.

SYSTEM AND SOFTWARE ARCHITECTURES
S urgical robots typically adopt the hierarchical multi-rate control architecture that
is found in general robotics. This architecture is depicted in Figure 2 and each
layer is further discussed in Section 3. The Hardware and Low-Level Control (LLC)
layers are similar to those in general robotics, possibly with additional safety mecha-
nisms. The unique characteristics of surgical robots become more evident at the High
Level Control (HLC) and Application layers. The HLC may interface to external sens-
ing, such as force sensing or real-time imaging, to implement closed-loop behaviors
based on these sensors. The Application layer implements the surgical workflow and
user interface and may include interfaces to other sub-systems, such as a database of
patient information and possibly other medical devices.

Interfaces FIGURE1

Progrietary Overview of
ha’:\:;::: "\::ilth Motors, telerobotic re-
d it da Vinci encoders, | search platform:
| documentatien; Mechanical

pots, switches

Research Kit
hardware pro-

—. vided by da Vinci

Surgical System,
electronics by
open-source
|IEEE-1394 FPGA
board coupled
with Quad Linear
- Amplifier (QLA),

- and software

by open-source

Open source
electronics
(schematics, PCB
layout, and FPGA| | FPGA, 1/0, and K&

firmware) Amplifiers

|IEEE-1394a
(Firewire)

Open source Control PC cisst/SAW pack-
software (Linux) age with ROS

interfaces.
ROS

From a wider perspective, the surgical robot is often just one component in a larger
medical system. Figure 3 depicts one representative system design that incorporates
a telesurgical robot and an ultrasound scanner. In this figure, the Left Master Robot
controls Slave Robot 2, which holds an ultrasound (US) probe, and the Right Master
Robot controls Slave Robot 1, which holds the surgical instrument (not shown). Ina
conventional telesurgical setup, the Cartesian position of each Master Robot provides
the desired Cartesian position of the corresponding Slave Robot (after transforma-
tions from the master to slave coordinate systems). The conventional setup also
includes a stereo Camera that provides video images that are displayed on the stereo
Diplay Hardware. The new capabilities are due to the addition of the US probe. The
system acquires the US images and a Feature Detection module looks for a specified
target inside the organ. If the target is found, it is presented as an augmented reality
overlay (e.g., a cross-hair marker) in the stereo display and is used to provide haptic
guidance to the surgeon via the Right Master Robot. For example, the High-Level
Controller can apply a small force on the Right Master Robot to guide the instrument
held by Slave Robot 1 to the target. Alternatively, if the target is a critical structure
that the surgeon should avoid, the system can impose a safety barrier to prevent
accidental damage. In either case, it is necessary for the target to be transformed to
the camera and robot coordinate systems. The transformation to camera coordinates
is enabled by the Tool Tracking module, which detects the US probe in the stereo
images. This module uses the measured position of Slave Robot 2, which is subject

20 SEPTEMBER 2015

to kinematic and non-kinematic errors, but
improves the accuracy by directly detecting the
tool in the stereo images. Finally, the target
position is transformed from camera coordinates
to robot coordinates using a known (calibrated)
transformation matrix.

One key point in Figure 3 is that while
hierarchical multi-rate control may be suitable
for the master and slave robots, there is also a
requirement to handle the video and ultrasound
images. These image channels have their own
timing requirements; for example, the video
will typically run at about 30 frames per second,
whereas the US is likely to run at a different
rate, Furthermore, execution of these channels
is distinct from the periodic execution of the
robot's low-level and high-level controllers. But,
it is also necessary to share data between the
channels and the robot controller, as illustrated
in Figure 3.

The above example motivates the discussion
of a software architecture to enable its imple-
mentation. In robotics (as in other domains),
the original functional programming model
gave way to object-oriented programming
(OOP), and has more recently transitioned to
component-based software engineering (CBSE).
In QOP, each module in the system is an object
that is an instance of a class. The class methods
define the capabilities of that module. For exam-
ple, the low-level controller (LLC) could contain
methods to query the current joint position and
to move the robot to a new joint position. The
high-level controller would directly invoke the
LLC methods; for example, the current Carte-
sian position is obtained by querying the joint
position and then applying forward kinematics.
The OOP approach represents a tight coupling,
where objects directly invoke methods of other
objects. It is more challenging to implement
when multiple computations occur in parallel
at different rates, as in Figure 3, because data
transfer between parallel execution threads re-
quires proper use of synchronization primitives
such as mutexes and semaphores.

In CBSE, the various modules in Figure 3
become separate components and interact via
message passing, This results in a loose coupling
between the components. Essentially, CBSE is
similar to the electrical engineering domain, in
that software components are the equivalent
of integrated circuits, and systems are built
by “wiring” software components much like
integrated circuits are wired together on circuit
boards. Some CBSE implementations require
each component to be in a separate process,
whereas others enable multiple components to
exist in a single, multi-threaded process. The
latter is advantageous for hard real-time systems
because communication between components
can be done more efficiently, especially when
the framework provides efficient, thread-safe
mechanisms, as in Orocos [6] and cisst [7]. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Apphcation Migh-Level Control Low-Level Control
(nor-real-time) (100 H2) (~1000 H2)

[apotcaton]| [fead sensors W ead sensors |
| compute Goal | it
[~] seont

Compute Joint Compute
Goals Control

Focus on DYNAMIC SYSTEMS & ConTROL

to form a common bus topology, and all slave nodes can receive data and respond via
a single Ethernet frame.

For the dVRK shown in Figure 1, the physical layer consists of the mechanical
components of the da Vinci and the custom electronics provided by the FPGA and
QLA boards. The interface to the physical layer is via IEEE-1394a (FireWire), which
is well suited for real-time control due to its high bandwidth, low latency, and support
for daisy-chaining, broadcast, and peer-to-peer transfers. This interface was selected
to achieve a centralized computation and distributed I/0 architecture [10), where all

FIGURE 2

Layers of Canonical Robot Control Architecture.

contrast, the Robot Operating System (ROS) [8]
requires each component (node) to be a separate
process, although there is support for multi-
threading via nodelets.

SYSTEM LAYERS AND INTERFACES
The following sections describe the layers
shown in Figures 2 and 3, focusing on the
interfaces to each layer. Although the real-time
data channel could be considered part of the
high-level control, it is sufficiently distinct from
traditional high-level robot control to warrant
its own subsection. For interfaces, the Robot
Operam\g System (ROS) [8] provides a common
e and standardized types for
robots and other devices and has been widely
adopted by robotics researchers. The current
version of ROS is not designed for real-time pro-
cessing, however, and thus it is more suitable for
the higher-level layers. For the lower-level lay-
ers, it is common to use a separate framework,
such as OROCOS [6] or cisst [7], often with
bridges to ROS. Because ROS is best supported
on Ubuntu Linux, it is also common to use other
standard protocols, such as OpenIGTLink [9], to
interface to software on other platforms.

Physical (Hardware) Layer
The physical layer consists of mechatronics
hardware, such as motors, encoders,
potentiometers, and associated electronics.
Traditionally, the electronics has consisted of
input/output (1/0) devices, such as analog-
to-digital (A/D) or digital-to-analog (D/A)
converters, and power amplifiers to drive
the motors. Recently, there has been a trend
toward intelligent drive electronics, which
combine the functions of the physical and low-
level contral layers.

Many systems employ custom interfaces
to the physical layer, though some standard
interfaces have emerged. One common standard
is CANOpen (www.can-cia.org), originally
developed for the Controller Area Network
(CAN) bus, but now available for other physi-
cal network layers, including Ethernet. Another
option is EtherCAT (www.ethercat.org), which
uses a standard Ethernet port on the master
device (e.g., PC) and custom hardware on the

control computations are performed on a familiar development environment (Linux

PC). The FPGA implements the FireWire link layer so that packet data can be sent to,
and received from, the I/0 hardware with minimal latency. An Ethernet-to-FireWire
bridge has recently been prototyped for the dVRK [11] to take advantage of the wider
availability of Ethernet.

Low-Level Control (LLC) Layer

The low-level control layer is often referred to as the servo control layer. Typically, it
consists of a simple control algorithm, such as proportional-integral-derivative (PID)
control, periodically executing at a high rate (e.g., 1 kHz), to control the individual axes
of the robot. The typical low-level control flowchart is to read the robot internal sen-
sor feedback, such as joint encoder positions, compute the error between the desired
and measured positions and/or velocities, apply the control law, and then output the
desired motor voltage or current. Thus, this layer requires a reliable operating environ-
ment, preferably with real-time performance. For this reason, it is often implemented
on special-purpose hardware, such as an off-the-shelf (commercial) controller board,
or on a PC using a framework that supports real-time processing.

The LLC interface is an obvious candidate for standardization because most robots
contain similar low-level controllers. In particular, a standard low-level control inter-

[voroware [[] Robot control Video channel [us enannel

FIGURE 3 lllustrative system architecture with telesurgical robot (two masters
and two slaves), stereo video cameras and display hardware, and ultrasound
(US) scanner. US probe Is held by Slave Robot 2 and Feature Detection

module looks for target. Tool Tracking module estimates position of US probe
from stereo camera images. using Slave Robot 2 position to initialize image
localization. Result of Tool Tracking is used to transform detected target to
camera coordif which g d reality overiay within Render
module. Target is also transformed to Right Master Robot coordinates (using
previously measured transformation) and provides haptic guidance to surgeon
to position Instrument held by Slave Robot 1 at target.

slave devices. Slave devices can be daisy-chained

SEPTEMBER 2015 21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

| I |

face would include commands to enable/disable motor power, home (initialize) the
robot, get the current joint positions, and move the joints to a specified position. The
other advantage to standardizing at this interface is that it typically forms the bridge
between the hard real-time and soft real-time parts of the system. This enables plug-
and-play i perability between with very different low-level control and
physical layers.

High-Level Control (HLC) Layer

While the LLC provides joint-level control, the HLC provides more sophisticated mo-~
tion capabilities. One example is Cartesian-level control, where the pose (position and
orientation) of the robot end-effector can be measured and controlled in Cartesian
coordinates. This requires knowledge of the robot’s kinematics. This layer often also
integrates feedback from other sensors external to the robot system, such as vision
and force, that can be used for visual servoing or force control, respectively. Many
surgical robot systems require a human (surgeon) in the loop, and so the high-level
control may include assistive control behaviors, such as virtual fixtures.

For the HLC interface, it is straightforward to standardize some basic capabilities,
such as Cartesian position control, and to allow system-specific extensions for other
capabilities such as sensor-based control modes. This is also the level where ROS
interfaces are most common, since the major advantage offered by ROS is the ability
to integrate with other high-level software modules.

Data Channel Layer

Data channels are common in surgical robot systems due to the integration with
real-time imaging such as video and ultrasound. A data channel consists of a source
(e.g., a camera), several filters that process the data, and one or more sinks (e.g., a
rendering device). There are two common implementation strategies: (1) a pipeline,
where a separate thread or thread pool is used for each filter, and (2) a stream, where
a single thread or thread pool is used to sequentially execute each filter. The advan-
tage of the pipeline is that it can provide higher throughput, since processing of new
data can begin immediately. The advantage of the stream is that it provides lower
latency because there is no need for synchronization primitives between the execution
of different filters.

The choice of a pipeline or stream depends on the application requirements and
leads to the choice of implementation framework. For human-in-the-loop systems,
which are common in surgery, minimizing latency (delay) may be critical, since added
delay can affect surgical performance. For this reason, the cisstStereoVision (SVL)
library (part of the cisst package) supports the stream processing paradigm. In SVL,
each filter is a separate component, but the components can exist in a single execut-
able and share memory buffers to reduce overhead. Synchronization primitives are
not required because SVL sequentially executes each filter.

If low latency is not required, the pipeline is an attractive option because it enables
the use of ROS nodes as filters (ROS provides a large collection of useful image pro-
cessing components). In ROS, each node is a separate executable, so by default it con-
tains its own thread (or thread pool) and a network of these nodes forms a pipeline.

Application Layer

The application layer primarily consists of the application logic (e.g., surgical
workflow) and the user interface. There are many different packages that can be used
to implement the application layer. If the application is primarily a graphical user
interface, one could adopt a framework such as Qt (www.qt.io). Alternatively, if the
application requires the display and manipulation of preaperative and/or intraopera-~
tive medical images, the application layer could be implemented in an extensible,
open source framework such as 3D Slicer (www.slicer.org). In this case, it would be
convenient to use Slicer’s built-in OpenIGTLink interfaces, The rviz package provided
by ROS is also an attractive option. It is based on the OGRE graphics rendering
engine and has plugins to support Qt widgets, images, and other data types. Finally,
some researchers choose Matlab/Simulink (The MathWorks, Inc., Natick, MA) as
their development platform.

CONCLUSIONS

his article presented an overview of surgical robot systems, with the recogni-
tion that these systems are not just robots, but integrated systems that include

22 SEPTEMBER 2015

robots, databases, and real-time sensors such
as video and other medical imaging devices.
Common research platforms, such as the

da Vinci Research Kit (dVRK) and Raven

11, have recently become available. This has
underscored the need for modular software
interoperability, so that researchers can share
software modules and more easily integrate
other robots and devices. Standardization and
interoperability are most applicable at the
higher software layers, and can benefit from
the availability of widely-adopted middleware
such as ROS. Other interface protocols, such
as OpenIGTLink, can be useful due to their
wide support within the medical imaging and
image-guided intervention domains. B

REFERENCES

1 Kwoh, Y, Hou, 1, Jonckheere, E., and Hayati, 5., 1988.A robot
with improved absolute positioning aauracyfu(‘f quided
stereotactic brai ", IEEE Trans.

35{2), Feb, pp. 153160,

2 Ng, W, Davies, B, Hibberd, R, and Timoney, A., 1993.“Robotic
surgevy—a first-hand experience in uansurethlal resection of

12(1), Mal,pMZD—IZS.

3 Mittelstadt, B,, Paul, H, Kazanzides, P, Zuhars,) Williamson,
B, Pettitt, R, (am,P Kloth, D, Rose, L., and Musits, B,, 1993.
of a surgical robot for ess total hip
replacemzm’. Robotica, 11, pp. 553-560.
4 Kazanzides, P, Chen, Z,, Deguet, A, Fischer, G, Taylor,R.,
and DiMaio, S., 2014, "An Open-Source Research Kit for the da
Vindi® Surgical System”. In IEEE Intl. Conf, on Robotics and
Automation (ICRA).
5 Hannaford, B,, Rosen, J, Friedman, D. W, King, H,, Roan, P,
Cheng, L., Glozman, D., Ma, 1, Kosari, 5. N, and White, L, 2013.
“Raven-I1: an open platform for surgical robotics research’” JEEE
Trans. on BiomedicalEngineering, 60(4), pp. 954-959.

6 Bruyninckx, H., Soetens, P, and Konincks, B., 2003. “The real-
time motion control core of the Orocos project” In IEEE Intl. Conf.
on Robotics and Automation (ICRA), Vol. 2, pp. 2766-2771.
7 Kapoor, A, DegueLA and Ka-nz»des,P 2006."Software
dical robot control” In IEEE
Intl. (onf on Robotics and Autmnamn (ICRA), pp. 3813-3818.
8 Quigley, M., Conley, K, Gerkey, B., Faust, J., Foote, T. B,, Leibs,
1. Wheeler, R., and Ng, A.Y, 2009.“ROS: an open-source robot
operating system'” In ICRA Workshop on Open Source Software,
9 Tokuda,), Fischer, G. S, Papademetris, X, Yaniv, Z, Ibanez,
L., Cheng, P, Liu, H., Blevins, J,, Arata, J,, Golby, A. J,, Kapur, T,
Pieper, S., Burdette, E. C, Fichtinger, G,, Tempany, C. M., and
Hata, N., 2009. “OpeniGiLink: an open network protocol for
image-guided therapy "The ional Journal
of Medical Robotics and Computer Assisted Surgery, 5(4),pp.
423434,
10 Kazanzides, P, and Thienphrapa, P, 2008. “Centralized
processing and distributed |/0 for robot control”. In Technologies
for Practical Robot Applications (TePRA), pp. 84-88.
11 Qian, L, Chen, Z, and Kazanzides, P, 2015.“An Ethemet to
FireWire bridge for real-time control of the da Vind Research Kit
(dVRK)". In IEEE Intl. Conf. on Emerging Technologies and Factory
Automation (ETFA).

Jy magazine,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

