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Abstract—The da Vinci Research Kit (dVRK) has been in-
stalled at over 25 research institutions across the world, forming
a research community sharing a common open-source research
platform. This paper presents the dVRK software architecture,
which consists of a distributed hardware interface layer, a real-
time component-based software framework, and integration with
the Robot Operating System (ROS). The architecture is scalable
to support multiple active manipulators, reconfigurable to enable
researchers to partition a full system into multiple independent
subsystems, and extensible at all levels of control.

I. INTRODUCTION

Telerobotic systems have a proven track record in several
application domains, including minimally-invasive surgery,
space exploration, and handling of hazardous materials. How-
ever, most real-world systems still use direct teleoperation,
where a human controls each action of the remote robot, even
though research in semi-autonomous teleoperation, including
supervisory control, shared control, and other co-robotic
methods, has been active for decades. One obstacle had been
the lack of a robust common research platform, but this has
recently been addressed by the availability of systems such as
the da Vinci Research Kit (dVRK)[1] and Raven II robot [2].

This paper focuses on the software architecture of the dVRK,
which is currently in use at more than 25 research centers
around the world. The choice of architecture was influenced
by the following key requirements:

1) Scalability to multiple master and slave robot arms. A
full da Vinci System typically contains six active robot
arms and four passive robot arms.

2) Easy reconfiguration, such as adding or removing arms
or even splitting the system into multiple independent
setups.

3) Use of a familiar software development environment,
such as C++ on a Linux PC, for all levels of the software
architecture.

4) Real-time performance for high-frequency, low-level
robot control.

5) Ability to integrate with other high-level robot compo-
nents and development environments, such as Matlab
and Python, via middleware.

These requirements led to the adoption of a centralized
processing and distributed I/O architecture [3] that enables all
processing to be performed on a personal computer (PC). The
dVRK uses C++ on Linux, though most of the software is
portable to other platforms. The key layers of the software

architecture, shown in Fig. 1, derive from the following design
decisions, which are presented in subsequent sections:

1) Use of a high-bandwidth field bus that supports daisy-
chain connection, multicast communication, and an
efficient (low overhead) software interface, which satisfies
the requirements for scalability and reconfigurability. This
is discussed in Section IV, which presents IEEE 1394a
(FireWire) as the primary field bus for the dVRK.

2) A real-time, component-based framework that enables
high bandwidth, low latency control. Section V describes
the design of the real-time software layer for the
dVRK, which is based on the open source cisst libraries
developed at Johns Hopkins University (JHU) [4], [5].

3) Bridge or proxy components that provide interfaces
between the real-time component-based framework and
other systems. Initially, this was provided by a custom
middleware [6] based on cisst and Internet Communica-
tions Engine (ICE), but has since transitioned to Robot
Operating System (ROS) [7], as discussed in Section VI.
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Fig. 1: da Vinci Research Kit (dVRK) control architecture



II. RELATED WORK

There has been an increasing need for open robot platforms
for research. We consider a platform to be “open” if it gives
researchers direct access to all sensors and actuators and allows
them to freely write/modify all levels of the control software.
This section reviews the control architectures of three widely
available open robot platforms.

The Whole Arm Manipulator (WAM, Barrett Technology,
Inc., Cambridge, MA) [8] is a 7 degree-of-freedom (DOF)
cable-driven robot with an optional three-finger Barrett hand.
It supports torque control of the robot and thus is an ideal
platform for implementation of advanced control algorithms.
The robot arm has a distributed motor controller module,
called Puck, installed on each joint and interconnects them
through a CAN bus at 1 Mbps. Robot control can either be
done with the internal Linux control computer with Xenomai
patched real-time kernel or with an external computer through
the exposed CAN bus port. The manufacturer also released
an open-source C++ library, libbarrett, which contains CAN
bus communication and kinematics routines. Recently, [9][10]
implemented control architectures that use the Robot Operating
System (ROS) for high level interface and the Open Robot
Control Software (OROCOS) for low-level control.

Another important open robot platform is the Personal Robot
2 (PR2, from Willow Garage, Palo Alto, California). The
robot features an omni-direction wheeled base, two torque
controlled 7-DOF arms with 1 DOF gripper, an actuated
head and other sensors (e.g. laser sensor, stereo camera). PR2
motion control comprises Motor Controller Boards (MCB)
interfacing motors and encoders, EtherCAT field bus, hard
real-time control software and a non-real-time ROS-compatible
software stack. The MCB closes a current PI-control loop at
100 kHz on a FPGA-based design. The main motor control
PC runs a PREEMPT RT patched Linux kernel for real-time
performance[11]. A real-time process handles EtherCAT com-
munication, servo-level control and publishes robot states via a
real-time safe ROS publisher. To add flexibility and extensibility,
a controller manager is implemented to dynamically load real-
time compatible controller plugins. Overall, the design provides
a real-time safe solution compatible with ROS, as well as extra
flexibility through the use of plugins. However, the real-time
code is robot specific and cannot easily be reused.

In the medical robotics field, the Raven II Surgical Robotics
Research platform [2] is an open architecture, patient-side robot
for laparoscopic surgery that consists of two cable-driven 7
DOF arms. It was a collaborative effort between the University
of Washington (UW) Biorobotics Lab and the University of
California Santa Cruz (USCS) Bionics lab, and was based on
Raven I developed at UW [12]. The UW/USCS team built
several Raven II systems that were installed in other research
labs and subsequently spun out production to a startup company,
Applied Dexterity Inc, that has continued to deliver systems.
The software is publicly available under the limited GNU public
license (LGPL). It utilizes a standard Linux kernel, with the
CONFIG PREEMPT RT patch set, so that real time control

software can run in user space and be coded in C or C++.
The control loop currently runs at a deterministic rate of 1
kHz. Key functions include coordinate transformations, inverse
kinematics, gravity compensation, and joint-level closed loop
feedback control. The link between the control software and the
motor controllers is a custom USB interface board with eight
channels of 16-bit analog output to each joint controller, and
eight 24-bit encoder inputs. The board can perform a read/write
cycle for all 8 channels in 125µs[13]. The Raven II has been
integrated with ROS, which allows easy integration with other
robotic software.

III. DVRK SYSTEM OVERVIEW

Fig. 2 summarizes the open source da Vinci Research Kit
platform, consisting of the first-generation da Vinci system
hardware, motor controller electronics, FPGA firmware and
a component based control software stack. The rest of this
section gives a brief introduction of the hardware, electronics
and firmware of dVRK to provide the background information
for subsequent sections. Interested readers are referred to [1]
for more details.
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Fig. 2: Overview of the da Vinci Research Kit telerobotic
research platform: Mechanical hardware provided by da Vinci
Surgical System, electronics by open-source IEEE-1394 FPGA
board coupled with Quad Linear Amplifier (QLA), and software
by open-source cisst package with ROS interfaces [1].

The mechanical hardware can either be obtained from
retired first-generation da Vinci Surgical Robot Systems or
as a Research Kit provided by Intuitive Surgical, Inc. The
Research Kit consists of the following components: two Master
Tool Manipulators (MTMs), two Patient Side Manipulators
(PSMs), a High Resolution Stereo Viewer (HRSV), a footpedal
tray, and documentation (e.g., wiring diagrams, connector
pinouts, kinematic parameters). The full da Vinci System may
include a third PSM and also includes an Endoscopic Camera
Manipulator (ECM), a stereo endoscope, and the passive Setup
Joints (SUJs) that support the PSMs and ECM.



The control electronics is based on two custom boards: (1)
an IEEE-1394 FPGA board, and (2) a Quad Linear Amplifier
(QLA). The schematics, firmware, low-level software interface,
and documentation are available on a public git repository.
These boards were designed for general mechatronics use, but
are well suited for controlling the dVRK. The IEEE-1394
FPGA board contains a Xilinx Spartan-6 FPGA, an IEEE-
1394a (FireWire) physical layer chip with two 6-pin connectors,
and (as of Rev 2.0) an Ethernet MAC/PHY controller with a
single 10BASE-T/100BASE-TX port. The QLA attaches to the
IEEE-1394 FPGA board and provides all hardware required
for current (torque) control of four DC brush motors, using a
bridge linear amplifier design.

The FPGA firmware is implemented in Verilog with three
major responsibilities: (1) exchanging data with the PC via
IEEE-1394 or Ethernet, (2) interfacing to I/O devices such as
encoders and digital-to-analog converters (DACs) for output
motor currents, and (3) hardware-level safety checking, such
as a watchdog timer and motor current safety check.

The following three sections describe the layers of the
software architecture presented in Fig. 1, which focus on
hardware interface, real-time control, and system integration.

IV. SCALABLE AND RECONFIGURABLE DISTRIBUTED
HARDWARE INTERFACE

No matter what software architecture is used, control
programs must fetch data from hardware sensors and then send
commands to actuators through a hardware communication
channel. While the hardware interface can be provided by
boards that are installed inside a computer workstation, it
is more convenient to distribute the hardware interfaces via
a field bus and is especially important for scalability and
reconfigurability. This section presents the design goals, an
analysis of potential options, and implementation details.

A. Design Goals

One of the most desirable properties of a field bus is to
provide deterministic performance with low latency. In our
experience, the largest factor that influences latency is the
software overhead on the control PC. Certainly, one factor
is the choice of communication protocol; for example, it is
well-known that the User Datagram Protocol (UDP) has lower
overhead (lower latency) than Transmission Control Protocol,
Internet Protocol (TCP/IP). But, in our experience, the most
critical factor is to minimize the total number of communication
transactions performed by the PC. This motivates use of a field
bus that supports broadcast, multicast and peer-to-peer transfers.

A second desirable property is for the field bus to support
“daisy chain” connection; that is, where one cable connects from
the PC to the first interface board, another cable connects from
the first board to the second board, and so on. This enables
the bus topology to scale with the number of manipulators
and facilitates reconfiguration to support different setups. For
example, the full da Vinci system, with 6 active manipulators
and a passive setup joint structure, requires 13 FPGA/QLA
board sets to control the full system (two 4-axis board sets

for each active manipulator and one board set for all passive
setup joints). Thus, scalability is an important requirement.
At the same time, reconfigurability allows multiple users to
simultaneously work on a single system by simply introducing
another control PC and changing the network cabling and
safety/e-stop chain.

Finally, it is necessary for the field bus to provide sufficient
bandwidth to support all the hardware on the bus, especially
when the goal is to perform even the high-frequency, low-level
control on the PC.

B. Design Analysis

Several field buses are available, such as Controller Area
Network (CAN) bus, Universal Serial Bus (USB), Ether-
net/EtherCAT, and IEEE 1394 (FireWire). The CAN bus is an
excellent protocol for control purposes but is limited by its
bandwidth (1 Mbps). Although USB provides high bandwidth
(480 Mbps for USB 2.0), its polling mechanism means that
it is not ideal for real-time applications[14] and it has a poor
scalability. Ethernet has sufficient bandwidth (10/100/1000
Mbps) but is typically wired in a “star” topology; supporting
a daisy-chain connection would require a high-speed switch
on each interface board. In EtherCAT, a master node (PC)
periodically initiates a transaction; slave nodes receive, forward
and append data packets with the aid of dedicated hardware
and software. This design results in the ability to communicate
with 100 axes in 100 µs [15]. FireWire is a high speed field
bus (up to 400 Mbps for IEEE-1394a) featuring peer-to-peer
communication, broadcasting, and physical repeaters at each
node to support daisy-chain connection.

While EtherCAT satisfies all the desirable properties of a field
bus (i.e., minimize PC transactions, daisy-chain configuration,
and high bandwidth), it was a relative newcomer when the
design decision was made in 2008 and even today remains
a proprietary implementation. We therefore selected IEEE-
1394 (FireWire), which also satisfies all desired properties,
but requires more implementation effort to reduce the number
of transactions on the PC, as discussed in the next section.
However, while FireWire was a reasonable option in 2008,
today it is less widely available than alternatives such as
Ethernet and USB. Thus, we recently added an Ethernet port
to the FPGA board so that it can act as a “bridge” between
the PC and the FireWire network, as also described below.

C. Implementation

The most straightforward protocol over the FireWire bus
is for the PC to individually read from, and write to, each
controller board; however, this solution does not scale well
because the overhead on the PC increases linearly with the
number of boards. We solved this issue by taking advantage
of the FireWire broadcast and peer-to-peer communication
capabilities [16]. Each control cycle begins when the PC
broadcasts a query command to all boards and then waits
for 5N µs, where N is the total number of boards. Upon
receiving the query command, each board broadcasts its status



(feedback) packet after waiting for 5n µs, where n is its node-
id (n = 0 . . . N − 1). The PC is configured to ignore these
responses, but the FPGA firmware on each board maintains
a data structure that contains the status received from each
board (because the FireWire link layer is implemented in the
FPGA, transaction overhead is negligible). After waiting 5N
µs, the PC reads the complete status information from one
board, then computes the control output and broadcasts it as a
single packet. Each board extracts its own commands from this
packet based on its board ID. This protocol has been shown
to enable control rates up to 6 kHz on a dVRK with 8 control
boards [16] and is routinely used to achieve 3 kHz control
on a full da Vinci at JHU. We have, however, discovered that
some PC FireWire adapters do not properly handle the stream
of broadcast packets; thus, we also provide an intermediate
protocol where the PC individually reads the status from each
board and then broadcasts the control output to all boards in a
single packet. With this protocol, the maximum control rate is
about 1.8 kHz.

As noted above, the FPGA board now includes an Ethernet
port to enable it to act as a “bridge”. Specifically, the PC
can send and receive packets via Ethernet to the first board
and then the FPGA firmware on that board communicates
with the rest of the boards via the FireWire network. A
prototype implementation of the Ethernet/FireWire bridge
design is presented in [17]; the implementation is currently
being improved to enable any board to serve as the bridge,
rather than requiring a dedicated board.

Figure 3 presents a UML class diagram of the interface
software that supports the above design. Two bases classes
are defined: (1) BasePort represents the physical fieldbus port
resource, which, depending on the implementation, can be a
Firewire or Ethernet port, and (2) the abstract BoardIO class
that represents the controller board. Currently, there is one
derived class, AmpIO, that encapsulates the functionality of
the FPGA/QLA board set.

V. REAL-TIME FRAMEWORK FOR ROBOT CONTROL

This section describes the middle layer in the software
architecture, which is the real-time framework for robot control.
This includes the Low Level Control and Mid Level Control
shown in Fig. 1. The Low Level Control implements the
joint controllers for the da Vinci manipulators and is typically
configured to run at 3 kHz. The Mid Level Control incorporates
the robot kinematics and contains a state machine that manages
the robot states (e.g., homing, idle, moving in joint or Cartesian
space); it typically runs at 1 kHz.

A. Design Goals

There are two primary design requirements:
1) A component-based framework, with well-defined inter-

faces between components, to enable different control
methods to be easily deployed to the system.

2) Efficient communication between components to support
control rates of 1 kHz or more.

Fig. 3: UML class diagram of interface software (subset of class
members shown): the design can scale and support different
field bus implementations.

These requirements influence the choice of both the execution
model and communication paradigm. Specifically, the compo-
nents can execute as separate processes (e.g., as ROS nodes) or
can execute within a single process, using multi-threading.
Communication can be implemented as client/server (e.g.,
remote procedure call) or as publish/subscribe, as exemplified
by ROS services and topics, respectively. The following section
analyzes the performance tradeoffs of these choices.

B. Design Analysis

We consider two key performance characteristics, which are:
(1) the manner in which low-frequency components handle
feedback from high-frequency components, and (2) the latency
of component communications.

First, we consider the ability to handle data exchange
between components with different execution rates in a timely
and reliable manner. The key requirement is to deliver the
latest data to the consumer component with minimum latency
and overhead. In particular, we consider the case where the
consumer component (e.g., Mid Level Control) is running at
a lower rate than the producer component (e.g., Low Level
Control). For a publisher and subscriber system using a simple
UDP implementation, the consumer’s queue can become full
and start to drop new arrival data (head-of-line blocking
problem). Besides, UDP does not guarantee data delivery.
The ROS subscriber handles this case better by dropping the
oldest data in the queue and by using the TCP protocol by
default for more reliable data transmission. However, when
multiple messages are queued on the consumer component,
the registered subscriber function is called multiple times
(depending on queue size), creating extra overhead. Setting the
receiver queue size to 1 removes this overhead but can result



in intermittent dropped packets; we have observed 4 dropped
packets out of 27,282 packets, for a 99.985% delivery rate.

Second, we consider communication latency. As shown in
Fig. 4, a ROS publisher and subscriber pair running on the
same computer has a mean latency of 244 µs and a maximum
latency of 2129 µs. The data is collected by time stamping a
ROS message before it is published, having the subscriber run
ros::spin() (equivalent to busy wait), and computing the
time difference between the wall clock time and the stamped
time in the subscriber callback function. While this latency
is negligible for systems running at slower rates, such as 100
Hz, it is substantial for control loops at 1 kHz or higher.
Moreover, this measurement uses a busy wait on the subscriber
side and consequently does not consider the additional latency
introduced by periodic calls to ros::spin(). A repeated
measurement with subscriber updates at 1 kHz is shown in Fig.
5. As expected, the mean latency jumps from 244 µs to 792
µs with a 548 µs increase, which is equivalent to half of the
node update period. To make things worse, the data does not
just flow one-way in robotic control and the subscriber (e.g.,
low-level control node) typically needs to do some computation
on the incoming sensor data and publish the results back to the
publisher (e.g., hardware interface node) for execution. This
doubles the overall latency time to around 1600 µs, which is
well over 1 ms.

Fig. 4: ROS system publisher/subscriber latency test. Hard-
ware: Intel i7-3630QM Quad-Core 2.4 GHz, 16 GB Memory.
Software: Ubuntu 12.04 LTS (Kernel 3.8.0-44-generic), ROS
Hydro.

A multi-threaded component-based robotic middleware, such
as OROCOS [18] from Katholieke Universiteit Leuven and
cisst [4] from Johns Hopkins University, can use a lock-free
shared memory implementation to minimize the overhead of
data delivery and to ensure that the latest data is available to
the consumer component. It is true that this approach can face
the same data synchronization challenge if the communicating
components are in separate threads, but there is the option to
chain execution of multiple components into a single thread
to avoid this issue, while still maintaining the advantage of
a component based architecture. In cisst, this is provided by
special component interfaces called ExecIn and ExecOut. The
parent component (e.g., I/O component) executes the child

Fig. 5: ROS system publisher/subscriber latency test, subscriber
updates at 1kHz, same hardware/software setup as Fig. 4.

component (e.g., low level control) by issuing a run event.
This feature does not require modification to the component
implementation (other than placement of the RunEvent) and
is activated by connecting the ExecIn interface of the child
component to the ExecOut interface of the parent component.
If the ExecIn/ExecOut interfaces are not connected during
system configuration, separate threads are created for each
component and they communicate asynchronously using the
same shared memory communication mechanism. Figure 6
shows the data transfer latency between two cisst components
using the ExecIn/ExecOut feature. On average, the latency
is 21.3 µs with a maximum value of 115.2 µs. OROCOS
RTT provides a similar capability via its PeriodicActivity class,
which serially executes components with equal periodicity and
priority, based on the order in which they are started.

Fig. 6: Communication latency in cisst, using ExecIn/ExecOut
for synchronous communication; components execute at 1kHz,
same hardware/software setup as Fig. 4.

C. Implementation

Based on the above analysis, we determined that a shared-
memory, multi-threaded design is better suited for the high-
frequency, low-latency control requirements for the dVRK,
which extend from the hardware interface (Section IV) to
the low-level and mid-level control. We selected the cisst
library due to our familiarity with its design; however, other



frameworks such as OROCOS would also be suitable. As
shown in Figure 7, the architecture consists of: (1) one
hardware Input/Output (I/O) component, mtsRobotIO1394 (3
kHz), handling I/O communication, (2) multiple servo loop
control components, mtsPID (3 kHz, one for each manipulator)
providing joint level PID control, (3) mid-level control compo-
nents (1 kHz, different components for each type of manipulator,
such as da Vinci MTM and PSM) managing forward and inverse
kinematics computation, trajectory generation and manipulator
level state transition, (4) teleoperation components mtsTeleop-
eration (1 kHz) connecting MTMs and PSMs and (5) a console
component (event-triggered) emulating the master console
environment of a da Vinci system. All of these are connected
using cisst provided/required interfaces. Note that although
they are independent components, the I/O component and the
PID components for the manipulators are interconnected via
the aforementioned ExecIn/ExecOut interfaces to use a single
thread, thereby guaranteeing synchronous communication and
minimal latency for maximum control performance. In this case,
the RunEvent is generated by the mtsRobotIO1394 component
after it receives feedback from the controller boards and before
it writes the control output. Thus, the mtsPID components
receive the freshest feedback data and compute the control
output, which is immediately sent to the hardware when
the mtsPID components return the execution thread to the
mtsRobotIO1394 component.

D. Community Extensions

Researchers from the University of British Columbia (UBC)
and Stanford University developed a MATLAB Simulink R©to
C++ interface for controller development on the dVRK [19].
The motivation for this work is that a typical C++ based
development cycle involves coding, compiling and debugging,
which is time consuming, and any design changes require
restart of the robot. On the other hand, MATLAB Simulink
provides a block diagram environment to design, evaluate
and even update controllers “on the fly”, thus enabling re-
searchers to rapid prototype controller designs. The developers
created a new mtsSimulinkController component to connect
the existing software framework to Simulink. This component
establishes TCP/IP connections between Simulink blocks and
cisst components. Conceptually, this is similar to the cisst-to-
ROS bridge described in Section VI-A. As a proof of concept,
the mtsSimulinkController component was used to replace the
standard mtsPID component. This extension has been shared
with other researchers in the dVRK community.

VI. SYSTEM INTEGRATION VIA ROS INTERFACES

Robot Operating System (ROS) is used to provide a high
level application interface due to its wide acceptance in
the research community, large set of utilities and tools for
controlling, launching and visualizing robots, and the benefits
of a standardized middleware that enables integration with a
wide variety of systems and well-documented packages, such as
RViz and MoveIt!. ROS also provides a convenient build system.

As noted in the previous section, ROS is fundamentally a multi-
process software architecture (though multiple nodelets can be
used within a single node). While this may have disadvantages
for real-time control, in a larger system it has the advantages
that it limits the scope of an error to a single process and
facilitates software development by minimizing the need to
restart and re-initialize the robot (i.e., as long as the robot
process is not restarted). This section presents the bridge-based
design that enables integration of the cisst real-time control
framework within a ROS environment, followed by a discussion
of the Catkin build system, and some integration examples.

A. CISST to ROS Bridge

To add support for ROS, a bridge based design was
implemented. This implementation includes a set of conversion
funtions, a cisst publisher and subscriber, and a bridge compo-
nent. The bridge component is both a periodic component
(inherits from mtsTaskPeriodic) and a ROS node. As an
mtsTaskPeriod component, it is executed periodically at a user
specified frequency and connected, via cisst interfaces, to the
other cisst components. The bridge component also functions as
a ROS node with a node handle that can publish and subscribe
to ROS messages.

To illustrate this design, consider the example in Fig. 8,
which has one cisst component connected to a ROS node via a
cisst-to-ROS bridge. The cisst component contains a provided
interface with two commands: (1) the ReadVal1 command to
read the value of mVal1, and (2) the WriteVal2 command
to write a value to mVal2. The component assigns mVal2 to
mVal1 in its periodic Run method. A cisst publisher is created
in the bridge component that connects to the ReadVal1
command and publishes to the ROS topic /Val1. Similarly,
a cisst subscriber subscribes to the ROS topic /Val2 and
connects to the WriteVal2 command. On the ROS side, the
node simply subscribes to /Val1, increments the received
value, and publishes to /Val2. At runtime, the bridge node
fetches data through the cisst interface, converts it to a ROS
message, and then publishes the message to ROS. In the
reverse direction, the ros::spinOnce function is called at
the end of the Run method, which calls the subscriber callback
function, converts data, and triggers the corresponding cisst
write command. The bridge always publishes at its specified
update rate. If the cisst component is faster than the bridge
component, the bridge only fetches the latest data at runtime,
thus throttling the data flow. If the bridge component updates
faster, it publishes the latest data at the bridge’s rate. For
certain applications that require publishing and subscribing
at the exact controller update rate, programmers can either
create a separate bridge for each cisst controller component or
directly initialize a publisher node within the cisst component
and call publish and ros::spinOnce manually.

B. ROS Ecosystem

In this subsection, the build system, ROS packages and sim-
ulation solutions that make the dVRK system ROS compatible
are detailed.
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Fig. 7: Robot tele-operation control architecture with two MTMs and two PSMs, arranged by functional layers and showing
thread boundaries[1].

cisst Component

Members:
mVal1, mVal2 

cisst Commands:
ReadVal1
WriteVal2 

Run(){
  mVal1 = mVal2 
}

Bridge Component

Publish Val1 to /Val1
Subscribe to /Val2

Val2Callback(msg) {
  ROS2Cisst(msg,data)
  WriteVal2(data)
}

Run() {
 ReadVal1(data)
 CisstToROS(data,msg)
 PublishVal1(msg)
 ros::spinOnce()
}

ROS Node

Subscribe to /Val1 
Publish to /Val2

Val1Callback(data)
{
 Val2 = Val1 + 1
 PublishVal2(Val2)
}

Fig. 8: cisst/ROS bridge example: a cisst component interfaces
with a ROS node using a bridge component. The ROS node
subscribes to Val1, increments it and publishes to Val2.

The cisst build system is based on CMake (www.cmake.org),
but for the convenience of ROS users, we created a catkin-based
solution[20] by making cisst, and other packages based on cisst,
into catkin packages. This allows ROS users to download the
dVRK code and use the ROS catkin tools to compile without
having to learn the details about how to configure and compile
the cisst library.

In addition, the MTM, PSM and Setup Joint models have
been generated in the ROS Unified Robot Description Format
(URDF) and can be used for visualization and kinematic
simulation in RViz.

Some use cases that take advantage of the ROS interface
and simulation are to use a real MTM and foot pedal as
input devices to tele-operate a simulated PSM [21] or alternate
slave robot, such as the Raven-II [2]. In fact, over half of
the researchers who have dVRK systems have used this ROS
interface for their research, mostly by implementing high-
level controllers that communicate with the dVRK mid-level
controller via ROS.

C. Community Extensions

Several researchers have taken advantage of the ROS
interface to implement higher-level controllers or to integrate
with other systems. In this section, we highlight a project

performed by a high school student during an internship at JHU.
This project was implemented with the Python programming
language, using ROS to interface between Python and the
dVRK C++ software. The student started with a straightforward
potentiometer calibration project, where the goal was to more
accurately determine the scale and offset with respect to the
incremental encoder and physical joint limits. The student
wrote a Python script to drive the joint of interest through a
list of joint positions equally spaced between the upper and
lower joint limits. At each position, the joint is commanded
to pause for 5 seconds, during which time the encoder and
potentiometer data are collected. The scale is computed by
finding the slope of the best fit line of the raw potentiometer
data to the incremental encoder data. In some cases, a scale
correction as high as 2% was observed. The offset was obtained
by using a custom-designed mechanical fixture to lock the final
four PSM axes in a known zero configuration. The offset
correction (compared to the offset values initially provided
by the manufacturer) typically ranged from 0.1 degrees to 1.5
degrees. The student’s Python program also saves the calibrated
scale and offset values back to the XML configuration file.
This software and documentation has been contributed to the
GitHub repository and has been used by other researchers with
dVRK systems. It is also interesting to note that the student
was able to perform this work using a single PSM, often while
other students were simultaneously using other parts of the
system. In fact, we had several occasions where three projects
were performed in parallel (e.g., the high school student using
one PSM, two other students each using an MTM/PSM pair).
This demonstrates the value of an architecture that supports
quick and easy reconfiguration.

VII. DISCUSSION AND CONCLUSIONS

We presented a scalable, reconfigurable, real-time and ROS-
compatible software architecture for the da Vinci Research Kit
(dVRK), currently installed at more than 25 research institutions
worldwide. The software stack is maintained by JHU, with
some contributions from the community. Over the past two
years, new software releases have occurred approximately every
six months.



The architecture was presented as three layers: (1) distributed
hardware interface via a high-bandwidth, low-latency fieldbus,
(2) real-time component-based framework with multi-threading
and thread-safe shared memory communication, and (3) high-
level integration with the ROS ecosystem. The BasePort and
BoardIO classes (and derived classes) defined in Section IV
represent the transition between the distributed hardware layer
and the real-time framework, whereas the cisst-to-ROS bridge
defined in Section VI provides the interface between the real-
time framework and the ROS environment.

The paper also briefly described community extensions
within these layers. One observation is that it is more likely
for researchers to extend the system at the higher layers (e.g.,
by integrating the dVRK with other systems and software).
Fortunately, due to the wide adoption of ROS, many researchers
have sufficient knowledge to accomplish this task. Some
research extensions require real-time performance, however,
which generally cannot be obtained via the ROS interfaces.
In these cases, researchers can extend the real-time layer, but
this introduces an additional learning curve for the cisst real-
time framework. We are currently working to simplify this
process by increasing the use of dynamically-loaded plug-in
components and Javascript Object Notation (JSON) files for
run-time configuration (as opposed to recompiling the entire
software stack). We are also aware of an ongoing effort for Real-
Time ROS (RTROS) [22], using the Ach library, which provides
an identical ROS Application Programming Interface (API)
while still meeting hard real-time constraints. In the future, this
could be a viable alternative for implementing the real-time
layer, with the benefit that the API is already familiar to many
researchers. The distributed hardware interface layer is the
most difficult to modify because much of it is implemented in
FPGA firmware (Verilog programming language); fortunately,
because it primarily manages I/O functions, it is unlikely to
require modification by researchers.

In summary, the dVRK software architecture has been
designed to provide scalable, real-time performance with an
optional (but increasingly used) bridge to the ROS environ-
ment. Researchers can implement new algorithms within this
architecture, taking advantage of the real-time framework when
required. While the dVRK already provides a common research
platform that enables better sharing of software and replication
of results, we are currently partnering with others in the
community to broaden the architecture to include other research
platforms, such as the Raven II robot and other devices.
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