Interfacing the da Vinci Research Kit (dVRK) with
the Robot Operating System (ROS)

Zihan Chen*, Anton Deguet*, Steve Vozar*, Adnan Munawar!, Greg Fischer' and Peter Kazanzides*
* Johns Hopkins University, Baltimore, USA 21218
T Worcester Polytechnic Institute, Worcester, USA 01609

Abstract—To interface the da Vinci Research Kit (dVRK) with
the Robot Operating System (ROS), we developed a software
stack dvrk-ros, exposing the cisst-based robot control API to the
ROS environment, providing Unified Robot Description Format
(URDF) files for visualization, and offering kinematic as well
as dynamic simulation. We also present some medical and non-
medical use cases.

I. INTRODUCTION

Robot Operating System (ROS) has become prevalent
among robotics researchers and industry. It provides a large
set of libraries and utility tools and enables inter-process
communication between robot control code in one computer or
across multiple computers [[1]. To leverage the tools available
in the ROS environment and allow ROS users fast prototyping
of high level control and application logic in ROS nodes,
we developed components that publish the robot state in
ROS messages and accept commands by subscribing to ROS
messages (topics). This paper gives a short overview of the da
Vinci Research Kit and supporting cisst-SAW software stack
(Section [MI), describes the cisst-to-ROS bridge, support for the
catkin build tool system, and the ROS API for dVRK and
simulation (Section , and reports several use cases based
on the dVRK ROS interface (Section [[V).

II. SYSTEM

The da Vinci Research Kit is based on proprietary me-
chanical hardware provided by the da Vinci Surgical System,
coupled with open-source electronics and software (see Fig.[I).
The mechanical system consists of two 7 Degrees of Freedom
(DOF) Master Tool Manipulators (MTMs), two Patient Side
Manipulators (PSMs), a Foot Pedal Tray and a High Resolution
Stereo Viewer (640 x 480). The Foot Pedal buttons can be
pressed to trigger different events that change the control
behavior. Each manipulator arm is powered by one controller
box with two sets of custom electronics boards, where each
set consists of an IEEE-1394 (FireWire) FPGA control board
and a Quad Linear Amplifier (QLA). All control boxes are
daisy chained on an IEEE-1394 bus and connected to a Linux
control computer. The FPGA board merely gathers sensor
data, transmits them to the control PC, receives motor torque
commands from the PC and latches them to the hardware.
All computation, including servo-level control, occurs on the
control PC. The component-based software system is based on
the open-source cisst/SAW package [2]], and includes compo-
nents for low-level I/0, servo-level control, Cartesian mid-level
control and teleoperation (see Fig. [2).

Interfaces
Proprietary
mechanical
. Motors,
hardware, with -
da Vinci encoders,

documentation .
pots, switches

~

Research Kit [l

Open source
electronics
(schematics, PCB
layout, and FPGA
firmware)

IEEE-1394a
(Firewire)

Eg’m u

FPGA, 1/0, and
Amplifiers

Control PC

Open source
(Linux)

software

Fig. 1: Overview of telerobotic research platform: Mechanical
hardware provided by da Vinci Surgical System, electronics by
open-source IEEE-1394 FPGA board coupled with Quad Lin-
ear Amplifier (QLA), and software by open-source cisst/SAW
package with ROS interfaces.

III. ROS INTERFACE

To interface the dVRK with ROS, we developed a cisst-
ros stack with components that publish the robot state as
ROS messages and accept commmands from ROS messages.
This implementation contains: (1) a set of global data type
conversion functions (e.g. cisst Cartesian velocity to ROS
geometry_msgs:: Twist and vice versa), (2) a templated cisst
publisher that fetches, converts, and then publishes the data,
(3) a templated cisst subscriber with a ROS subscriber callback
function, and (4) a cisst-to-ROS bridge component that serves
as a container for cisst publishers and subscribers. The bridge
runs periodically at a frequency specified by the developer. A
separate ROS thread is created to handle the subscribers. In
addition, MTM, PSM and ECM models have been generated
in Unified Robot Description Format (URDF) and can be used
for visualization and simulation (Fig. 3).

A. Build instructions and ROS API

To further leverage the ROS build system and ease the build
process of the dVRK project, we use the catkin build system
to build the entire cisst and dVRK software, as described in

QtConsole <EZ>£ (Console) W
5 4

sawQtTeleop)| mtsTeleoperation) (mtsTeleoperation)
=e—willi=)

! ? 1 ! ? 1 | ' 1 ! ' 1

QtPSM 1 | I 1 |

ol | ([T |] | [(e |

QtMTM 1 f\ T 1 h T \ A T 1 h T

' : 1 , : 1 ' : } ' 1

sawQtPID > mtsPID [mtsPiD | mtsPID mtsPID_|

M':'MLI) PSI\I<Il)t\) MTII‘\/IR 1 PSII\'/Iz)f)

sawQtlO <;‘:> (mtsRobot|01394]

QtWidget component (optional) L Single thread

W (SAWcomponent | ? provided)\ required

Fig. 2: Robot tele-operation control architecture with two MTMs and two PSMs, arranged by functional layers and showing

thread boundaries

Fig. 3: Robot models displayed in RViz

the [catkin tools build instructions wiki page. Three groups of
API have been exposed by the dVRK ROS API: (1) Servo
level API with both position and torque read/write interface;
(2) Cartesian (robot) level API providing Cartesian position
read/write interface with or without trajectory interpolation;
and (3) Foot Pedal API that publishes foot pedal events.

B. Simulation

In addition, the dvrk-ros stack provides a kinematics
simulation for debugging and application simulation (e.g.,
ECM control). It also includes a Gazebo simulation for the
MTM, capable of simulating its dynamic behavior, which
is intended to develop various types of force controllers
(impedance/admittance and stiffness).

IV. USE CASES
A. Augmented Reality: 3D Measuring Application

During minimally invasive surgery, measurements of tissue
(e.g., during tumor resection) can be challenging due to mag-
nification effects. But, this distance information is available
via robot forward kinematics and can be overlaid on the live
video. As shown in Fig.[4] a pinch event on the master triggers
the measurement function and indicates the measuring start
position. When enabled, a line from the start position to the

Measured
Distance

Fig. 4: Distance measured with PSM overlaid on live video

current robot tooltip position is displayed close to the PSM
instrument tip.

We focus on the vision pipeline here as the robot system
was covered in Section [} The stereo vision system comprises
two SONY lipstick cameras, connected to a SONY DXC-
LS1 camera control unit, then a Hauppauge 610 USB-Live
2 Analog Video Digitizer in a control computer. The gscam
ROS package, leveraging the gstreamer library, serves as the
driver for these two cameras, which provides a ROS image
pipeline compatible interface including the raw image topic
and camera information. The augmented reality aspect of this
application requires the camera intrinsic parameters through
camera calibration using ROS camera_calibration as well as
extrinsic parameters through hand-eye calibration using ROS
aruco_ros and visp_hand2eye_calibration. After calibration,
raw images from the cameras are rectified with image_proc
and then displayed in RViz with a Camera display type. The
distance text display moves with the patient side instrument
tool, thus its position is defined with reference to the tool,
transformed to the slave base frame and then to the camera
frame. A visualization marker message is then created with
distance information and published to RViz for visualization.
This example will be released in the future as a ROS package
in the dvrk-ros| repository.

https://github.com/jhu-dvrk/sawIntuitiveResearchKit/wiki/CatkinBuild
https://github.com/jhu-dvrk/dvrk-gazebo
https://github.com/jhu-dvrk/dvrk-ros

Publisher

,,,,,,,,,,,,

Fig. 5: Flowchart of the extended dVRK setup including
MATLAB, Gazebo and Movelt!

B. Motion Planning Framework for Surgical Assistance

Expanding on the capabilities of the cisst-ROS bridge,
two additional components have been added using the cisst-
ROS bridge. The first component is the Movelt interface that
allows motion planning for the dVRK manipulators [3]. The
Movelt! [4] package is a standalone package that is supported
within ROS and contains state-of-the-art planning algorithms
derived from the Open Motion Planning Library (OMPL).
Using Movelt, it is possible to use motion planning in static
environments, as in Fig. [f] where the PSM manipulators are
positioned in between the ribs of a model skeleton. The
motion planners are used to compute a collision-free trajectory
between specified start and goal poses and the computed path
is graphically shown as a trail of PSM motions. The surgeon
uses the MTMs to choose the start and goal poses, aided by
the visual feedback of simulated PSMs and the surgical area.

The second component is the newly developed Matlab-
ROS interface, which expands the capabilities of the dVRK
to researchers familiar with Matlab. As shown in Fig. [5] the
MATLAB interface communicates over the Matlab-ROS IO, a
newly added functionality by Mathworks, and can read/write
data. Since development and testing is much easier in Matlab,
this interface opens up many possibilities for researchers who
are not familiar with C++, Python, or ROS.

C. Learning by Observation for Surgical Subtasks

Researchers at the University of California, Berkeley de-
veloped a system for learning by observation research [5]
for surgical subtasks, including multilateral cutting of 3D
viscoelastic and 2D orthotropic tissue phantoms (see Fig.
[/). They explored a “Learning By Observation” approach
where motion sequences and sensor conditions are identified,
segmented and parameterized to build a finite state machine
for each subtask. As shown in Fig. [§] the dVRK ROS system
provides a Cartesian level API that takes a Cartesian pose
command from the high level controllers implemented in the
ROS environment.

D. Satellite Servicing

The dVRK is also used for non-medical robotics appli-
cations, such as a ground-based demonstration of telerobotic
satellite servicing tasks, including refueling [6]. In the en-
visioned scenario, human operators on Earth would use the
dVRK to control a remote on-orbit robot. One critical task is

(2 (b)

Fig. 7: Autonomous multilateral surgical subtasks with the
da Vinci Research Kit (dVRK): (a) Debridement of 3d vis-
coelastic tissue phantoms in which small target fragments are
removed from a phantom. (b) Pattern cutting of 2D orthotropic
tissue phantoms in which the objective is to cut out a specified
circular area. Figure courtesy of authors of [3]

Vision Stereo Camera
Processing Hardware
Operation Logic
Teleoperation State High Level ROS CISST-ROS
Demonstrations Machine Controller Bridge

f

Vision

DVRK l
PSM Control
- Inverse Kinematics PID FPGA PSM
icati . Controller Controller Hardware
- Application Logic

Fig. 8: Software Architecture. The software consists of three
components: vision, operation logic, and the DVRK system
software. Figure courtesy of authors of [5]]

to cut the tape that secures a patch of multilayer insulation
(MLI) over the fuel access port. We use the dVRK and cisst-
to-ROS bridge extensively for developing and testing methods
for improving the capabilities of human operators to perform
this task under time delays of several seconds [7].

Our ground-based setup uses the right MTM of the dVRK
to control a 7-DOF Whole Arm Manipulator (WAM, Barrett
Technology, Inc, Newton MA) that contains a six-axis force-
torque sensor (JR3 Inc., Woodland, CA) mounted between the
WAM wrist and the titanium cutting blade (NASA Goddard
Space Flight Center), as shown in Fig. 9] The force sensor
provides cutter contact force information and enables active
force-control in the direction normal to the MLI. A stereo
camera pair is also mounted on the robot end-effector to pro-
vide visual feedback. Augmented reality overlays, generated
with ROS rviz, are added to the stereo video feedback and
displayed to the user via the dVRK master console using the
“Camera” display plugin (see Fig. [10).

The master robot is controlled using the ROS and
cisst/SAW open-source robot software systems, while the slave
robot is controlled using the Orocos Real Time Toolkit 8] and
ROS. Communication between the master and slave robots,
including video and data, is accomplished over a local area
network via ROS messaging. We induce constant delays on

Fig. 6: Figures shows different views of the start (orange) and goal (green) poses of the PSMs positioned in between the model
skeleton. The trail shows the resulting collision-free path produced by the motion planning algorithm.

Structural

Stereo ;
Camera e

Fig. 10: Augmented reality display for satellite servicing,
showing cutter goal position (green chevron) and virtual fixture
path constraint (blue line)

the order of seconds in our experiments via a ROS message
filter to simulate space teleoperation conditions.

V. DICUSSION AND CONCLUSION

We presented a software stack that helps to interface the da
Vinci Research Kit with the Robot Operating System (ROS)
and showed a few research uses cases developed in different
universities and for both medical and non-medical applications.
During the course of the work, we learned that as the commu-
nity grows larger, the compatibility and stability of the system,
including both hardware and software, have become critically
important. On the hardware side, we found that due to chipset
design issues, some FireWire cards drop packets and can
potentially reduce controller reliability, especially when using a

broadcast protocol for both reading and writing. Another issue
is support for new releases of the Linux operating system,
ROS, and other software dependencies. For example, Ubuntu
14.04 LTS uses Qt5 by default; this includes some API changes
and required updates to our CMake files. ROS adopts a similar
release protocol and can introduce compatibility issues in the
future. The ROS stack presented above was developed and
tested under the ROS Hydro distribution. Successful use of the
ROS Indigo distribution has been reported in the community.
Going forward, we plan to support Ubuntu LTS releases and
compatible ROS distributions.

ACKNOWLEDGMENT

This work is supported by NSF NRI 1208540, NASA
NNGI10CRI16C, and by the dVRK Consortium.

REFERENCES

[11 M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[2] M. Y. Jung, M. Balicki, A. Deguet, R. H. Taylor, and P. Kazanzides,
“Lessons learned from the development of component-based medical
robot systems,” Journal of Software Engineering for Robotics, vol. 5,
no. 2, pp. 2541, 2014.

[3] Z. Zhang, A. Munawar, and G. S. Fischer, “Implementation of a motion
planning framework for the davinci surgical system research kit,” in The
Hamlyn Symposium on Medical Robotics, 2014, p. 43.

[4] S. Chitta, I. Sucan, and S. Cousins, “Moveit![ros topics],” Robotics &
Automation Magazine, IEEE, vol. 19, no. 1, pp. 18-19, 2012.

[5] A. Muralil, S. Sen, K. B, G. A, M. S, P. S, B. WD, L. S, A. P,
and G. K., “Learning by observation for surgical subtasks: Multilateral
cutting of 3d viscoelastic and 2d orthotropic tissue phantoms,” in /EEE
Intl. Conf. on Robotics and Auto. (ICRA), May 2015.

[6] National Aeronautics and Space Administration Goddard Space
Flight Center, “Robotic refueling mission,” 2015. [Online]. Available:
http://ssco.gsfc.nasa.gov/robotic_refueling_mission.html

[71 S. Vozar, S. Leonard, L. L. Whitcomb, and P. Kazanzides, “Experimental
evaluation of force control for virtual-fixture-assisted teleoperation for
on-orbit manipulation of satellite thermal blanket insulation,” in IEEE
Intl. Conf. on Robotics and Auto. (ICRA), May 2015.

[8] H. Bruyninckx, P. Soetens, and B. Koninckx, “The real-time motion

control core of the Orocos project,” in IEEE Intl. Conf. on Robotics
and Automation (ICRA), vol. 2, Sep 2003, pp. 2766-2771.

http://ssco.gsfc.nasa.gov/robotic_refueling_mission.html

	Introduction
	System
	ROS Interface
	Build instructions and ROS API
	Simulation

	Use Cases
	Augmented Reality: 3D Measuring Application
	Motion Planning Framework for Surgical Assistance
	Learning by Observation for Surgical Subtasks
	Satellite Servicing

	Dicussion and Conclusion
	References

