An Ethernet to FireWire Bridge for Real-Time
Control of the da Vinci Research Kit (dVRK)

Long Qian*', Zihan Chen* and Peter Kazanzides*
* Johns Hopkins University, Baltimore, MD USA, email: pkaz@jhu.edu
t Tsinghua University, Beijing, China

Abstract—In this paper, a real-time control network based
on Ethernet and FireWire is presented, where Ethernet provides
a convenient, cross-platform interface between a central control
PC and a FireWire subnetwork that contains multiple distributed
nodes (I/O boards). Real-time performance is achieved because
this architecture limits the number of Ethernet transactions on
the host PC, benefits from the availability of real-time Ethernet
drivers, and uses the broadcast and peer-to-peer capabilities
of FireWire to efficiently transfer data among the distributed
nodes. This approach and resulting benefits are comparable
to EtherCAT, but preserves existing investments in FireWire-
based controllers and relies only on conventional, vendor-neutral
network hardware and protocols. The system performance is
demonstrated on the da Vinci Research Kit (dVRK), which con-
sists of 8 FireWire nodes that control 2 Master Tool Manipulators
(MTMs) and 2 Patient Side Manipulators (PSMs), for a total of 28
axes. This approach is generally applicable to interface existing
FireWire-based systems to new control PCs via Ethernet or to
serve as an open-source alternative to EtherCAT for new designs.

I. INTRODUCTION

Robot systems require high-frequency (usually greater than
1 kHz), and preferably hard real-time, periodic computation
for low-level control of joint positions, velocities, or torques.
Traditionally, low-level control is implemented on one or more
embedded systems that each contain a microprocessor and
I/O devices to achieve fast I/O and limit data communi-
cation, which can be called a distributed computation and
I/O architecture. Recently, there has been growing interest
in the research community for a centralized computation and
distributed I/O architecture (Fig. 1), which performs all com-
putations, including low-level control, on a PC and connects
to I/O devices via a high-speed fieldbus network. This ar-
chitecture provides a more familiar development environment
(e.g., a Linux PC), thereby facilitating rapid prototyping and
reconfiguration.

[ttt PC ---------

1 | High- Low- Robot

i level — level

| Hardware
' | control control

Fig. 1. Centralized computation and distributed I/O architecture

Given that I/O communication occurs within the low-level
control loop, the control performance is bounded by the I/O
network bandwidth and latency, which is difficult to minimize
in conventional networks such as Ethernet and USB, especially
when multiple bus transactions are needed to communicate

978-1-4673-7929-8/15/$31.00 (©2015 IEEE

with multiple distributed nodes. Controller Area Network
(CAN) is well accepted in the real-time community, but has a
maximum rate of 1 Mbps and thus is not fast enough to support
a high-frequency control loop on the PC. For higher perfor-
mance, FireWire (IEEE-1394) has traditionally been a viable
option and has been incorporated into several commercial
products. FireWire also forms the basis for SAE AS5643 [1],
which is designed for military and avionics applications and
focuses on bus determinism and safety features. Various real-
time Ethernet solutions have been proposed both by vendors
and academia and real-time Ethernet drivers, such as RTnet, are
promising developments [2]. Some Ethernet-based solutions
adopt custom hardware, at least for the embedded devices.
Of these, the most popular is EtherCAT (www.ethercat.org),
depicted in Fig. 2, which uses conventional Ethernet hardware
and custom software drivers on the master PC and custom
hardware on the embedded (slave) nodes. The main advantage
of EtherCAT is that all the slave nodes can be daisy-chained
together and the master PC can perform I/O with the entire
network by sending and receiving just one Ethernet frame,
thereby limiting software overhead. Each slave node receives
the frame on its in port and extracts/inserts data from/into the
frame on-the-fly while forwarding it to the out port.

DPRAM DPRAM DPRAM
PC | Slave 1 I | Slave 2 I Slave N |

Fig. 2. EtherCAT system with 1 master and N slave nodes

We investigated and implemented a FireWire-based design
in 2008 [3] and later proposed a broadcast communication
protocol on the same system [4], achieving a four-fold perfor-
mance improvement. Although designed for general-purpose
use, these FireWire-based controllers have primarily been used
to control the da Vinci®) Research Kit (dVRK) at Johns
Hopkins University and more than 15 other institutions that
have replicated this setup [5]. However, FireWire today is
less prevalent than in the past and even the real-time PC
driver stack, RT-Firewire [6], is no longer maintained. Thus,
although we achieved multi-kilohertz control using conven-
tional FireWire drivers on a generic Linux kernel, this solution
suffers from occasional timing outliers. Furthermore, while the
new broadcast protocol can achieve up to 6 kHz control rates
[4], we have found that it does not work reliably with some
PC FireWire chipsets/drivers. Finally, FireWire interfaces are
not as common as Ethernet on modern computers and laptops,
and use of librawl394 primarily restricts the system to Linux



and its real-time variants. Although a Windows version of
libraw1394 has been reported [7], this would only be suitable
for non-real-time applications. More importantly, some dVRK
sites have invested in other real-time platforms, such as Matlab
Simulink Real-Time (formerly called Matlab xPC), which
supports Ethernet and EtherCAT but not FireWire. Thus, while
one could invest in developing real-time FireWire drivers for
the different platforms and require all control computers to
have FireWire interfaces, it is more practical to leverage the
existing hardware and software support for Ethernet as a real-
time control fieldbus.

We considered two approaches to leverage Ethernet-based
technology for our multi-node distributed control system: (1)
replace the FireWire interfaces on each node with EtherCAT, or
(2) introduce an Ethernet-to-FireWire bridge between the PC
and FireWire subnetwork. The first approach has the potential
advantage that the cables are conventional unshielded twisted
pair (UTP) and can be high-flex, longer, and more easily routed
inside robotic structures. Cabling is not an issue for the dVRK,
however, and this approach would require a substantial retrofit
of existing systems, so we adopted the second approach, which
is illustrated in Fig. 3. This paper presents the Ethernet-to-
FireWire bridge design and the results of experiments, in-
cluding those with the actual dVRK hardware, to demonstrate
that with the appropriate software, it provides hard-real-time
performance for multi-kiloherz centralized control of a large
number of distributed robot axes.

- Embedded

High- Low- | ! 1|
9 _| Field-bus
level — level 5
| Bridge
control control | ' |

i 7~ Embedded

Robot
' | Hardware

Fig. 3. Centralized computation and distributed I/O with fieldbus-bridge

II. BACKGROUND

This section gives an overview of the dVRK system
architecture and reviews the FireWire-based communication
protocols.

A. Open Source Mechatronics

A FireWire-based controller [8] (Fig. 4) has been
designed and is available open source at http://jhu-
cisst.github.io/mechatronics, including the schematics, PCB
layout, and FPGA firmware (Verilog). The controller features
a separate FireWire/FPGA board and a Quad Linear Amplifier
(QLA) I/O board, which provides the flexibility to design a
new FPGA board that introduces a different communication
network (e.g., EtherCAT) or to design a new I/O board to
interface to different hardware. Although this is a general-
purpose mechatronics system, its primary application is to
control the da Vinci Research Kit (dVRK). As illustrated
in Fig. 5, multiple FPGA/QLA board sets are daisy-chained
together and connect to a Linux control PC.

B. FireWire Communication Protocol

IEEE-1394 is well suited for real-time control applications
due to its high-speed, peer-to-peer, full-duplex characteristics.
The maximum transmission rate of the IEEE-1394a physical

|EEE 1394 FPGA Controller

Quad Linear Amplifier with heat sink
Fig. 4. FireWire/FPGA board and Quad Linear Amplifier (QLA)

/O  wsmm FireWire

Robot Manipulator 1

Robot Manipulator 2

Fig. 5. Hardware architecture: one control PC and 4 FireWire FPGA/QLA
board sets controlling 2 da Vinci manipulators (7 DOF each); a complete
dVRK system would use 8 FPGA/QLA board sets to control 4 manipulators.

medium is 400Mbits/sec. Up to 64 nodes are supported in a
FireWire fieldbus network.

We initially used a sequential FireWire protocol to commu-
nicate to the slave nodes. In the control loop, the PC software
sequentially queried each FPGA node status (individual block
reads), computed the control commands, and sent them to
each board in separate FireWire block write requests. This
protocol required two transactions per node and thus the I/O
time increased linearly and quickly became a bottleneck for
high performance control of multiple degrees-of-freedom.

Recently, we introduced a broadcast-based protocol (Fig. 6)
that was designed to take advantage of FireWire’s peer-to-
peer capability [4]. With this protocol, the control cycle starts
with the PC broadcasting a query packet to all nodes (FPGA
boards). After sending this packet, the PC software sleeps
for 5 x N us (N = number of nodes). Each FPGA board
transmits its status using an asynchronous broadcast block
write packet 5 x NodelD ps after it received the query packet
(NodelD is the FireWire node-id, which is assigned during
the bus initialization). Each FPGA node has a unique node-
id, which always starts at 0 and is sequential. All broadcast
packets are received and cached by each FPGA node, so that
all nodes maintain a copy of the entire robot status feedback.
Upon awakening, the PC software reads the status of all
boards from any FPGA node. This is a Time Division Multiple
Access (TDMA) method, scheduled with respect to the query
command. It is similar to the FireWire isochronous transfer
mode, except that it can have an arbitrarily specified frequency.
After the PC computes the control commands, it transmits a
broadcast packet that is received by all nodes.

This system was shown to provide fast I/O times on
average, enabling closed-loop control up to 6 kHz for a full
dVRK system [4]. But, several limitations were revealed: (1)
while the average I/O time was fast (116 us), outliers were
up to five times the average time (562 us); (2) the broadcast
protocol did not work reliably on all PC chipsets/drivers; (3)
many computers do not have a FireWire interface; and (4)
many operating systems do not provide a low-level FireWire
packet interface such as libraw1394. The first limitation could
be overcome by using a real-time FireWire driver, such as RT-
FireWire, but this driver is no longer maintained. These issues



5_‘:
]
]
|

Node N

L X AL TN d

@ PC broadcasts a query command.

Each FPGA broadcasts status packet in fixed time slot.
All FPGAs receive and cache status packets (PC does not)

PC reads all status from any FPGA (Node N in this figure).

PC computes control and broadcasts motor current commands.

Fig. 6. FireWire-based broadcast protocol.

mmm /O < Ethernet

Ethernet
—> FireWire giﬁ’: giﬁ‘;
Bridge

mmmm FireWire

Robot Manipulator 1

Robot Manipulator 2

Fig. 7. Hardware architecture with Ethernet to FireWire bridge
motivated us to develop an Ethernet-to-FireWire Bridge, which
is described in the next section.

III. ETHERNET-TO-FIREWIRE BRIDGE DESIGN

Compared with a fully FireWire-based system (Fig. 5),
Fig. 7 introduces a new system hierarchy for dVRK with an
embedded bridge between the PC and FireWire-based control
network. All the communications between the PC and slave
nodes are done via the bridge node. While the bridge talks to
the rest of control network using the FireWire-based broadcast
protocol, the connection between the PC and bridge node is
point-to-point, thereby eliminating the need for a complicated
media access control protocol.

This section describes the bridge design, frame transmis-
sion protocol and status control process implemented on the
firmware of the bridge node.

A. Bridge Design

The prototype bridge consists of our custom FPGA board,
which contains a Xilinx Spartan-6 XC6SLX45 FPGA and
IEEE-1394a physical layer chip, coupled with an off-the-shelf
Ethernet PHY and MAC controller board (KSZ8851-16mll-
EVAL). The Ethernet chip manufactured by Micrel is a single-
port controller chip with a non-PCI Interface and is available in
8-bit and 16-bit bus designs. We utilized the 16-bit bus in our
design for better efficiency in Ethernet data I/O. We designed
a custom connector board to interface these two boards, as
shown in Fig. 8. The final version of this design could consist
of two boards: the existing FPGA board and a custom mating
board that contains the Ethernet chip and physical interface.

Fig. 8.

Prototype Ethernet-to-FireWire Bridge

B. Frame Transmission Protocol

The main functionality of the bridge node is to convert an
Ethernet packet from the PC into a FireWire packet, perform
the FireWire transaction, and convert the FireWire response to
an Ethernet packet for the PC. To simplify the development
of the bridge node FPGA firmware and to maximize system
efficiency, the FireWire packet construction and parsing is
implemented in the PC software.

Frames transmitted from the PC to the bridge node include
quadlet read/write, block read/write, the previously defined
broadcast-based write/query, and system synchronization, each
with an appropriate Ethernet header and checksum. The frame
structure is presented in Fig. 9. Quadlet read/write and block
read/write are defined in the IEEE-1394 standard, enabling
basic read and write transactions of variable length between
two individual nodes within a FireWire network. As demon-
strated previously, the broadcast-based write/query accelerates
the control system by eliminating multiple requests to each
separate node from the PC. The system synchronization frame
is used to inform the bridge of the number of active nodes, N,
in the FireWire network. The PC controller is authorized to
add or remove an existing board to or from the list of current
active boards. After a broadcast query is transmitted, the bridge
will serve as a hub, collecting N responses before sending the
combined packet back to the PC.

Upon receiving an Ethernet packet, a parallel validation
checking process based on the frame format is activated. The
validated frame is passed to the FireWire network with the
Ethernet header and checksum removed. If a system synchro-
nization packet is received, the local parameter N is updated; it
is not necessary to relay that frame to the FireWire subsystem.

In the reverse direction, quadlet/block read response, write

Ethernet
Checksum

> Bridge

FireWire-format
Frame

FireWire-format

Frame

Ethernet
Header

PC <G

Fig. 9. Frame Structure



Broadcast Read 1 IRIG: ETH RX

TRIG: ETH_TX Request from PC

4
@]
e
S Al Tyags Transmit Broadcast
T”nf,:l‘;ll( Ig lSICDdld Read Request to
’ FireWire
e/
TRIG: FW RX (O— TRIG FW TX
- -

Receive Broadeast Receive Broadcast
Response ACK from node 0

(num_node times) .

b

O\ TRIG: FW_ACK_RX
Fig. 10. Finite State Machine for control loop

acknowledge frame, and broadcast query response are trans-
mitted through the FireWire field-bus. The first two frame
types are defined in the IEEE-1394 standard as responses to
quadlet/block read/write requests. When quadlet/block read
responses are received by the bridge node, they are passed
to the Ethernet network with a specific Ethernet header and a
correct checksum. The write acknowledge frame triggers the
switch of state in the bridge. The PC controller is not ac-
knowledged because the overhead of transmitting an Ethernet
frame is comparatively high. The broadcast query response
is initiated by individual slave nodes in the distributed 1/O
subsystem, and provides the feedback information for the PC
to perform closed-loop control. The bridge gathers N feedback
frames and then transmits them in one Ethernet packet with a
predefined Ethernet header.

With this design, we successfully inherit the advantages
of the FireWire-based approach and at the same time benefit
from the ubiquity of Ethernet hardware and its well-maintained
real-time driver stack for the PC. Robustness is also improved
because the FireWire broadcast protocol no longer involves the
FireWire chipset on the PC, which was problematic on some
systems.

C. Status Control

Featuring its parallel operation, hard real-time capability
and plentiful I/O extensions, the FPGA is more suitable than
the PC to implement the finite state machine of the control
loop. Sequential jumping is predefined in the firmware of the
bridge, along with the signals triggering status shift. Though
the PC is responsible for initiating read or write commands,
its request does not act as an interrupt for the bridge node.
Instead, commands are buffered until the bridge reaches the
status of fetching a PC request. A timeout is set in order to
avoid unnecessary waiting caused by errors. When the timeout
requirement is met, the bridge switches back to the Broadcast
Read Request from PC state, where it constantly polls for the
trigger representing the arrival of a request initiated by the PC
controller. In a complete control cycle, the finite state machine
(FSM) is implemented as illustrated in Fig. 10. Five triggers
are utilized to complement the FSM architecture.

D. Ethernet Software

The software of the bridge-based da Vinci Research Kit
is arranged into several functional layers which remain un-

Application

Teleoperation

High-level Control (Customized)

Low-level Control (PID)

i Hardware Interface — T T T
|| FireWire Port | | Ethernet Port | |

- T\ s § .

Fig. 11. Software Architecture

modified compared to the FireWire-based dVRK: hardware
interface, PID-based low-level control, high-level customized
control, teleoperation and application layer [5].

The introduction of the Ethernet-to-FireWire bridge re-
quires an Ethernet interface instead of FireWire in the hardware
interface level; this Ethernet interface is provided by the C++
library pcap. An Eth1394Port is created to represent the node
in the bridge-based design. An abstract base class BasePort
is introduced so that both Ethi394Port and FirewirePort can
inherit from it and provide the same functionality. Class
AmplO, which represents an FPGA/QLA node, is unchanged,
thereby keeping the upper software layers intact.

The Ethernet interface library pcap is directly available for
Linux and OS X. For Windows, a slightly modified library,
winpcap, is utilized, which provides the same methods for
Ethernet port operation. Portability between different operating
systems is guaranteed by the cross-platform support of the
pcap library, which is a significant improvement compared
to the FireWire-based dVRK, which required the libraw1394
library that is only readily available on Linux. To achieve best
performance of the system, a real-time environment composed
of a real-time operating system and real-time Ethernet driver is
required. Our software can be quickly ported to such platforms
with the ubiquitous support for the pcap library; for example,
Xenomai with the RTnet driver or Matlab Simulink Real-Time.

IV. EXPERIMENTS

System performance experiments are conducted in the fol-
lowing three aspects. First, we measure the round-trip time of
the standard FireWire protocol guadlet read, using a real-time
operating system and real-time Ethernet driver. Timing char-
acteristics of the bridge-based data transmission are compared
with the FireWire-only transmission. Following that, control
loop performance of both systems is tested and discussed.
Furthermore, the cross-platform support for an Ethernet-based
design is demonstrated.

A. FireWire Transaction

As presented in the System Overview, the previous
FireWire-based design achieves a good average timing per-
formance, however, the system reliability suffers from lack of
support for a real-time PC FireWire driver. The introduction
of the Ethernet-to-FireWire bridge aims to improve the system
performance by taking advantage of the prevalent real-time
Ethernet driver. First, the round-trip time of the basic quadlet



Quadlet Read Performance
' I Fire\ire
-Etﬁerne;t-lF-ireWire

3500

3000 fof R -

.
i
[=
=

unts

8 200 o Avg=2879 i
Std =5.34 us
Max = 238.78 us

Iteration (c
&
=

=
=}
=]

— Avg £ 3531 us

Std =133 us
m Max = 50.00 us
|I.i I : E

i
=}
=]

(=}

10 20 30 40 a0 B0 70 80 a0 100
Round-trip Time (us)

o

Fig. 12. Quadlet read transaction times, tested on Xenomai real-time
operating system. FireWire uses standard (non-real-time) FireWire driver,
whereas Ethernet/FireWire uses RTnet real-time driver.

read transaction for both system configurations is measured
by averaging over 5000 transactions, as shown in Fig. 12.
An Ethernet sniffer (tcpdump) based on the pcap library is
used to capture the timestamp of Ethernet frames. A round-
trip of a quadlet read transaction includes an Ethernet quadlet
read request initiated by the PC controller and a corresponding
response transmitted from the slave node. For both designs, the
testing environment is set up on a real-time operating system
(Xenomai 2.6.3 real-time framework based on Linux). The
bridge design uses a real-time Ethernet driver (RTnet 0.9.12),
while the FireWire-based design uses the standard (non-real-
time) FireWire driver.

The average execution times for the FireWire-only and
Ethernet-to-FireWire Bridge designs are 28.79 ps and 35.31
us, respectively. The average time for the bridge-based design
is longer due to the two additional Ethernet transmissions.
But, the maximum time for the quadlet read transaction is
significantly reduced from 238.78 us for the FireWire-based
design to 50 ps for the bridge-based design. This is primarily
due to the use of the real-time Ethernet driver.

B. System Performance

We measured the control loop performance of the bridge-
based design and compared it with the FireWire-only design,
as shown in Fig. 13. The system performance includes the
I/O time of Ethernet and FireWire in an 8-node system,
which is typical for the control of a da Vinci Surgical Robot.
Broadcast transfers are employed in both systems to maximize
control efficiency. The test environment is the same as for the
quadlet read, except that the FireWire-only design is tested
with the generic Linux kernel rather than with Xenomai. In
our experience, Xenomai and Linux-generic produce similar
I/O times, since the primary cause of timing variations appears
to be the non-real-time FireWire driver used in both cases.

The Ethernet I/O costs about 47.76 us in the system loop,
which is higher than the Ethernet I/O time for a quadlet
read transaction due to the larger payload. As expected, the
bridge-based design has more consistent timing measurements
than the FireWire-only design. The standard deviation of the
bridge-based design is 1.47 pus, and the maximum time cost
is 175.00 ws, which is less than one-third of the FireWire-
only design. With PC computation time added, the complete
control loop for the bridge-based design is less than 200 ps,

System Performance
Il FireWire
I Ethernet/FireWire

3000

2500

2000

Avg = 164.08 Us
Std =1.47 us
Max = 175.00 us

Avg = 11637 Us
Std =834 us
1500 [ Max = 562.00 ts

lteration (counts)

1000 3

o 50 100 150 200 250 300
Round-trip Time (us)

Fig. 13. I/O Time of FireWire and Ethernet/FireWire bridge in an 8 FPGA-
QLA board system (standard dVRK setup); FireWire tested on generic Linux,
whereas Ethernet/FireWire tested on Xenomai with RTnet driver.

which is sufficient for 5 kHz control. Though the control
frequency of the FireWire-based design is higher on average,
the performance is not as deterministic due to the lack of a
real-time FireWire driver.

The introduction of the Ethernet-to-FireWire bridge sepa-
rates the FireWire subsytem, which can then be implemented
entirely on the FPGA. This makes it easier to support our
custom broadcast protocol and avoid problems that we faced
with some PC FireWire chipsets and drivers. On the PC, this
design benefits from the availability of a real-time Ethernet
driver.

C. Cross-platform Capability

The prevalence of Ethernet ports and software support
(e.g., pcap library) renders the bridge-based design as a cross-
platform solution. This test measures the timing performance
of quadlet read and broadcast read for an 8-node system using
different operating systems, as shown in Fig. 14. Xenomai is a
real-time framework for Linux; real-time drivers such as RTnet
are supported on the Xenomai platform. System performance
is less satisfactory on non-real-time platforms such as Linux
Generic and Apple OS X. For the Windows operating system,
an echo test reveals that it takes approximately 2.34 ms for two
Windows controllers to communicate through the raw Ethernet
protocol. These tests verified the cross-platform capability of
our design, but also demonstrated the importance of a real-time
platform for a control system. Thus, cross-platform capability
is more important for different real-time operating systems,
such as Xenomai, Matlab Simulink Real-Time, and QNX.
Support for the latter two real-time systems is the subject of
future work.

D. Analytical Comparison with EtherCAT

The performance of the Ethernet/FireWire bridge architec-
ture can be compared based on analytical models. Prytz [9]
presented a model for the round-trip time on EtherCAT. This
model assumes a master forwarding time based on the packet
size and Ethernet bandwidth (e.g., 100 Mbit/s), a maximum
delay of the master PHY (expected to be less than 0.5 us),
and a 1 us forwarding time per slave node (this includes cable
and slave PHY delays). The model does not, however, consider
software overhead. We add a constant term, 7%, to model



Commands over platforms

600
500
m
2
o 400
£
'_
2 300 :
T e
€ 200 //
3 y
& //
100 C// —=—Quadlet Read
o —©—Broadcast Read
Xenémai Linuxf‘Generic OéX
Operating System
Xenomai Linux OS X
Avg 35.3088 | 260.8400 | 306.7500
Quadlet Read (us) Max 50.0 744.0 414.0
Std 1.3337 16.0609 30.7173
Avg 73.5246 | 262.7728 | 559.6167
Broadcast Read (us)  Max 84.0 660.0 636.0
Std 1.5074 14.2807 36.5718

Fig. 14. Quadlet Read/Broadcast Read Timing data on Xenomai, Linux and
0S X

software overhead. Essentially, we assume that the software
overhead due to the increase in packet size (as the number
of nodes is increased) is negligible compared to the total
software overhead. This is a reasonable assumption because the
amount of time required to copy packet data from one memory
location to another is small compared to other tasks done by the
operating system and driver, such as context switches. Thus,
we model the round-trip EtherCAT time as:

8(Sw + Sr)

Teca = Tsw N
: N Bw

+ NT,e )]

where N is the number of slave nodes, S,, is the number
of bytes written from the PC to each slave, .S, is the number
of bytes sent by each slave to the PC, BW, is the Ethernet
bandwidth in Mbits/s (100), and T is the forwarding time of
each EtherCAT slave node (1 us according to [9]). This equa-
tion assumes the use of a single packet, which is reasonable
given the number of bytes required in our application. It also
does not include the overhead for the standard Ethernet header
and CRC, which are the same for all Ethernet-based protocols,
or the overhead for the EtherCAT header, which is assumed
to be negligible.

To estimate a value for the software overhead, T5,,, we note
that since both EtherCAT and the Ethernet/Firewire bridge use
a standard Ethernet port on the PC, any software driver used for
one could be used for the other. Thus, we estimate T, from
the experimental results obtained with our Ethernet/Firewire
bridge. To do this, we develop a similar model for the round-
trip bridge time as:

8(Sw+5,) . 85,
N NT.; 2
B + ; + r (2

Tbridge =Tsw+Ty+N BW

where BW; is the FireWire bandwidth (400 Mbits/s for
IEEE-1394a), T; is the bridge delay, and Ty is the time
required for each slave to broadcast its data to the bridge node
(5 ps). We assume that the bridge delay is constant because
it can immediately begin processing an incoming (Ethernet or
FireWire) packet and start transmitting the outgoing (FireWire
or Ethernet) packet. Furthermore, because it is implemented in
an FPGA and uses a 25 MHz 16-bit parallel interface to the
Ethernet MAC, we assume that 7} is negligible.

For the da Vinci research kit, the packet sizes (not including
headers, checksums, etc.) are S,, = 20 bytes and S, = 68
bytes. Using these values, and the other values presented
above, produces the following linear equation:

Tbridge = Tew + 12.44N (/LS) (3)

We measured the round-trip time for the Ethernet/FireWire
bridge for setups with 4, 5, 6, 7, and 8 nodes. Performing a
linear regression yielded a slope of 16.08 us/mode and an inter-
cept of 35.12 ps. Thus, we estimate Ty, = 35.12us. We note
that the measured slope (16.08) is larger than the computed
slope (12.44), which indicates that our model may be missing
some sources of delay or that some of our parameter estimates
may be inaccurate. Our future work includes development of
an improved model.

Applying the estimated value of 7§, to the EtherCAT
implementation produces the following model:

Tecar = 35.12+ 8.04N  (us) )

To make a fair comparison, we evaluate the EtherCAT
analytical model to the Bridge analytical model, rather than
the measured data, because it is likely that measurements
on an actual EtherCAT system would not agree exactly with
the model. The models predict that the Ethernet/FireWire
Bridge approach does not scale as efficiently as the EtherCAT
approach; specifically, the overhead per node is about 50%
higher. But, it is also important to note that the difference of
about 4.4 ps/node is relatively small compared to the software
overhead of 35.12 us, which is a best-case scenario since it was
obtained using the RTnet driver on Xenomai. For example, on
an 8-node dVRK system, the Ethernet/FireWire bridge would
require 135 us, compared to 100 us for EtherCAT.

V. DISCUSSION AND CONCLUSIONS

We developed an Ethernet-to-FireWire bridge that enables
real-time control of a distributed system from a central PC.
Real-time control is possible because the number of Ethernet
transactions can be limited to two or three (depending on the
protocol), regardless of the number of distributed nodes. In
this manner, our system offers benefits similar to EtherCAT
but utilizes only commodity network protocols (Ethernet and
FireWire) and thus our complete hardware/software design is
available open source.

The addition of the Ethernet-to-FireWire bridge node and
associated real-time driver improves I/O performance, sig-
nificantly reducing the maximum I/O time at the cost of a
slight increase in the average I/O time (48 ps for the dVRK



System). From a systematic level, the bridge acts as a buffer
or switch between two fieldbuses, Ethernet and FireWire.
FireWire is designed as a real-time control fieldbus, however,
real-time performance is only guaranteed within the embedded
subsystem. Ethernet is not intrinsically designed as a real-
time transmission media, but has a wide range of real-time
support benefitting from its ubiquitous applications. The bridge
approach leverages the strengths of two different transmission
media (Ethernet and FireWire), while compensating for the
drawbacks of each to achieve high bandwidth hard-real-time
control performance. Although demonstrated on the da Vinci
Research Kit, this approach is generally applicable to other
systems.

ACKNOWLEDGMENT
This work is supported by NSF NRI 1208540.

REFERENCES

[1] H. Bai, “Analysis of a SAE AS5643 Mil-1394b based high-speed
avionics network architecture for space and defense applications,” in
IEEE Aerospace Conf., Big Sky, MT, Mar 2007, pp. 1-9.

[2]

(3]

[4]

[5]

(6]

(71

(8]

[9]

J. Kiszka, B. Wagner, Y. Zhang, and J. Broenink, “RTnet-a flexible
hard real-time networking framework,” in /IEEE Intl. Conf. on Emerging
Technologies and Factory Automation (ETFA), Catania, Italy, Sep 2005.

P. Kazanzides and P. Thienphrapa, “Centralized processing and dis-
tributed I/O for robot control,” in Technologies for Practical Robot
Applications (TePRA), Woburn, MA, Nov 2008, pp. 84-88.

Z. Chen and P. Kazanzides, “Multi-kilohertz control of multiple robots
via IEEE-1394 (FireWire),” in IEEE Intl. Conf. on Technologies for
Practical Robot Applications (TePRA), April 2014, pp. 1-6.

P. Kazanzides, Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor, and
S. DiMaio, “An open-source research kit for the da Vinci® surgical
robot,” in IEEE Intl. Conf. on Robotics and Auto. (ICRA), May 2014.

Y. Zhang, B. Orlic, P. Visser, and J. Broenink, “Hard real-time network-
ing on Firewire,” in 7th Real-Time Linux Workshop, Lille, France, Nov
2005, pp. 1-8.

M. A. Tsegaye, “A comparative study of the Linux and Windows device
driver architectures with a focus on IEEE1394 (high speed serial bus)
drivers,” Master’s thesis, Dept. of Computer Science, Rhodes University,
Dec 2002.

Z. Chen, A. Deguet, R. Taylor, S. DiMaio, G. Fischer, and P. Kazanzides,
“An open-source hardware and software platform for telesurgical robot
research,” in MICCAI Workshop on Systems and Arch. for Computer
Assisted Interventions, Sep 2013.

G. Prytz, “A performance analysis of EtherCAT and PROFINET IRT,”
in [EEE Intl. Conf. on Emerging Technologies and Factory Automation
(ETFA), Hamburg, Germany, Sep 2008, pp. 408-415.



