
A Scalable, High-Performance, Real-Time Control

Architecture with Application to Semi-Autonomous

Teleoperation

by

Zihan Chen

A dissertation submitted to The Johns Hopkins University in conformity with the

requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

October, 2017

c⃝ Zihan Chen 2017

All rights reserved

Abstract

A scalable and real-time capable infrastructure is required to enable high-performance

control and haptic rendering of systems with many degrees-of-freedom. The specific

platform that motivates this thesis work is the open research platform da Vinci Re-

search Kit (dVRK).

For the system architecture, we propose a specialized IEEE-1394 (FireWire) broad-

cast protocol that takes advantage of broadcast and peer-to-peer transfers to mini-

mize the number of transactions, and thus the software overhead, on the control PC,

thereby enabling fast real-time control. It has also been extended to Ethernet via

a novel Ethernet-to-FireWire bridge protocol. The software architecture consists of

a distributed hardware interface layer, a real-time component-based software frame-

work, and integration with the Robot Operating System (ROS). The architecture is

scalable to support multiple active manipulators, reconfigurable to enable researchers

to partition a full system into multiple independent subsystems, and extensible at all

levels of control.

This architecture has been applied to two semi-autonomous teleoperation applica-

ii

ABSTRACT

tions. The first application is a suturing task in Robotic Minimally Invasive Surgery

(RMIS), that includes the development of virtual fixtures for the needle passing and

knot tying sub-tasks, with a multi-user study to verify their effectiveness. The second

application concerns time-delayed teleoperation of a robotic arm for satellite servic-

ing. The research contribution includes the development of a line virtual fixture with

augmented reality, a test for different time delay configurations and a multi-user study

that evaluates the effectiveness of the system.

Thesis Advisor

Peter Kazanzides Ph.D., Johns Hopkins University, Baltimore

Thesis Committee

Russell H. Taylor Ph.D., Johns Hopkins University, Baltimore

Louis L. Whitcomb Ph.D., Johns Hopkins University, Baltimore

iii

Acknowledgments

First I would like to thank my advisor Professor Peter Kazanzides. His guidance,

motivation, firm and continuous support and encouragement was a constant presence

during my Ph.D. and Master work over the past years. He was always willing to share

his deep knowledge in electronics, software and robotics, always available whenever I

wanted to discuss ideas, issues and progress. I could not have had a better advisor

and mentor for my Ph.D. study.

I would like to thank Professor Louis L. Whitcomb for his guidance and for par-

ticipating on my thesis and GBO committee. I would also like to thank Professor

Russell H. Taylor for the wonderful Computer Integrated Surgery course, which intro-

duced me to the medical robotics field and gave me the opportunity to work with Dr.

Kazanzides, for advising the virtual fixture for suturing project, and for participating

on my thesis committee.

I would additionally like to thank Professor Iulian Iordachita for his help in me-

chanical design and manufacture, as well as for participating on my GBO committee.

I would like to thank Professor Scott Smith for participating on my GBO committee,

iv

ACKNOWLEDGMENTS

for sharing his insight into software engineering and for writing my annual review let-

ter. Special thanks to Professor Allison Okamura for advising me during my master

program. Thanks to Professor Simon Leonard for sharing his knowledge in software,

robotics and computer vision.

Many thanks to Anton Deguet for helping me write and debug numerous lines of

code, teaching me almost every aspect of programming, sharing his broad wisdom in

software design as well as his appreciation of fine coffee. I am also thankful for the

many fun conversations we had. I would also like to thank Balazs P. Vagvolgyi for

sharing his expertise in computer vision and software.

I would like to thank members of the Sensing, Manipulation, and Real-Time

System (SMARTS) group for all the guidance, help, support and discussion over the

years. Special thanks to Dr. Paul Thienphrapa for his patient guidance for software

design, FPGA programming and FireWire. Thanks to Dr. Tian Xia for help in

compiling and debugging code and advice on Ph.D. life. Thanks to Dr. Min Yang

Jung for his help on various software/hardware topics. Thanks to Dr. H. Tutkun Sen

and Ehsan Azimi for the endless wonderful conversations. Thanks to Long Qian for

his help in developing FPGA firmware. Thanks to Jie Ying Wu for organizing all the

lab lunches. Thanks also to the other members of SMARTS: Nathan Cho, Sungmin

Kim, Andrew Hundt, Paul Wilkening and Isha Kandaswamy. I was also lucky to be

part of the larger Laboratory for Computational Sensing and Robotics. I owe special

thanks to Dr. Jonathan Bohren for sharing his insights in software and robotics and

v

ACKNOWLEDGMENTS

introducing the Robot Operating System. Thanks to Dr. S. Swaroop Vedula for his

help in designing the user study, as well as analyzing data. Thanks to Dr. Anand

Malpani for his help in designing virtual fixtures, and for paper writing. Thanks to

Dr. Kelleher R. Guerin for sharing his expertise in mechanical design and robotics.

Thanks also to Preetham Chalasani for all the great conversations and the good food.

Finally, I would like to thank my parents, Yuewei Chen and Ping Chen, for their

constant love, guidance, encouragement, and support.

vi

Dedication

I dedicate my dissertation work to my parents for all the help, support, encour-

agement and love during the long journey. This Thesis would not have been possible

without you!

vii

Contents

Abstract ii

Acknowledgments iv

List of Tables xv

List of Figures xvi

1 Introduction 1

1.1 The da Vinci Research Kit (dVRK) 2

1.2 Challenges of a scalable and high performance architecture for dVRK 5

1.3 Overview of Architectures . 7

1.4 Proposed Approach . 10

1.5 Applications . 12

1.6 Broader Impact . 13

1.7 Overview of Contributions . 13

1.7.1 A broadcast-based fieldbus communication protocol 13

viii

CONTENTS

1.7.2 A bridge design to enable real-time control over a conventional

network . 14

1.7.3 An analytical model of the timing performance for the proposed

protocols and EtherCAT . 14

1.7.4 A scalable and extensible software architecture 15

1.7.5 Virtual fixtures for suturing and knot tying tasks 15

1.7.6 Virtual fixtures for time-delayed teleoperation for satellite ser-

vicing . 16

2 System Architecture 17

2.1 Introduction and Overview of Thesis Contributions 17

2.2 Historical Context . 19

2.3 Fieldbus Survey . 20

2.4 Distributed I/O System . 26

2.4.1 Introduction to IEEE 1394 . 29

2.4.2 FireWire Transactions Timing Performance 33

2.4.3 System Performance . 33

2.4.4 Analysis . 34

2.5 Broadcast Communication Protocol 36

2.5.1 Transmission model . 37

2.5.2 Bus optimizations . 39

2.5.3 System Characteristics . 41

ix

CONTENTS

2.5.3.1 Determinism . 41

2.5.3.2 Error tolerance . 42

2.5.3.3 Backward compatibility 43

2.5.4 Experiments . 44

2.5.4.1 FPGA hardware-based measurement 44

2.5.4.2 Model parameter estimation with PC software-based

measurement . 45

2.5.5 Discussion . 53

2.6 Ethernet-to-FireWire Bridge for Real-time Control 54

2.6.1 Introduction . 55

2.6.2 Ethernet-to-FireWire Bridge Design 57

2.6.2.1 Prototype Bridge Board Design 57

2.6.2.2 Frame Transmission Protocol 58

2.6.2.3 Status Control . 61

2.6.2.4 Ethernet Software 61

2.6.3 Experiments . 63

2.6.3.1 FireWire Transaction over Ethernet 64

2.6.3.2 System Performance 66

2.6.3.3 Cross-platform Capability 68

2.6.3.4 Ethernet Bridge Timing Model 69

2.6.4 Discussion . 70

x

CONTENTS

2.7 Performance Comparison with EtherCAT 73

2.7.1 Introduction to EtherCAT . 73

2.7.2 EtherCAT Timing Performance 75

2.7.2.1 EtherCAT Timing Model 76

2.7.2.2 Model Parameter Measurement 78

2.7.2.3 EtherCAT Model Verification 80

2.7.3 Time Performance Comparison on dVRK 82

2.7.4 Discussion . 82

2.8 Conclusions . 85

3 Software Architecture 89

3.1 Introduction . 89

3.2 Thesis Contributions . 92

3.3 Related Work . 93

3.4 Low-Level Hardware Interface Layer (Fieldbus) 96

3.5 Real-time framework for robot control 98

3.5.1 Design Goals . 98

3.5.2 Design Analysis . 99

3.5.3 Implementation . 104

3.6 System integration via ROS interfaces 106

3.6.1 CISST to ROS Bridge . 107

3.6.2 ROS Ecosystem . 109

xi

CONTENTS

3.7 Discussion and Conclusion . 109

4 Application to Virtual Fixture Assisted Suturing 112

4.1 Introduction . 112

4.2 Thesis Contributions . 115

4.3 Virtual Fixtures . 116

4.3.1 Task Description and Analysis 116

4.3.2 Impedance Virtual Fixture . 117

4.3.3 Needle Passing Virtual Fixture 120

4.3.4 Knot Tying Virtual Fixture 123

4.4 Experiment . 124

4.4.1 System Implementation on da Vinci Research Kit 125

4.4.2 Needle Passing Sub-task . 126

4.4.3 Knot Tying Sub-task . 127

4.4.4 Test Procedure . 128

4.4.5 Data Collection and Analysis 130

4.5 Results and Discussion . 130

4.5.1 Needle Passing Sub-task . 131

4.5.1.1 Statistical Analysis 131

4.5.1.2 Trajectory Analysis 131

4.5.1.3 Operator Workload 133

4.5.1.4 Subjective Evaluation 135

xii

CONTENTS

4.5.2 Knot Tying Sub-task . 135

4.5.2.1 Errors (Number of Slips) 135

4.5.2.2 Task completion and trajectory length 136

4.5.2.3 Operator Workload 136

4.5.2.4 Subjective Evaluation 137

4.6 Summary and Future Work . 139

5 Application to Teleoperated Space Robotics 142

5.1 Introduction . 142

5.2 Thesis Contributions . 145

5.3 Technical Approach . 145

5.3.1 Plane Virtual Fixture . 147

5.3.2 Hybrid Position/Force Controller and Registration Update . . 147

5.3.3 Safety and Task Monitoring 149

5.3.4 Line Virtual Fixture . 151

5.3.5 Predictive display . 152

5.4 User Study . 153

5.4.1 System Implementation . 154

5.4.2 Test Conditions . 158

5.4.3 Procedure . 160

5.4.4 Metrics . 161

5.5 Results and Discussion . 162

xiii

CONTENTS

5.5.1 Task Completion Time . 162

5.5.2 Operator Workload . 164

5.5.3 Adverse Events . 166

5.5.4 Subjective Evaluation . 167

5.5.5 Discussion . 167

5.5.5.1 Line Virtual Fixture 167

5.5.5.2 Task Monitor . 168

5.5.5.3 Cutting Strategy . 169

5.5.5.4 Other observations 171

5.6 Conclusions . 171

6 Conclusions 173

6.1 Summary of chapters . 174

6.2 Discussion and Future Work . 176

A Appendix: How to Compile RTnet and Xenomai 178

Vita 198

xiv

List of Tables

5.1 List of task monitor states. 151
5.2 Test conditions . 159
5.3 Paired t-test results of operator workload 165

xv

List of Figures

1.1 Research da Vinci System at JHU . 4
1.2 Three common architectures for robot control. 8

2.1 USB tiered star topology . 23
2.2 USB transaction frame and micro-frame latencies [54] 23
2.3 Ethernet Powerlink bus cycle . 26
2.4 IEEE-1394 FPGA board and Quad Linear Amplifier (QLA) 27
2.5 Block diagram of I/O devices . 29
2.6 dVRK hardware architecture . 30
2.7 IEEE-1394 cycle with isochronous and asynchronous transactions . . 31
2.8 IEEE-1394 4 layer protocol architecture 32
2.9 Asynchronous Block Read (400 Mbps) 35
2.10 Asynchronous Block Write (400 Mbps) 35
2.11 Timing of IEEE-1394 asynchronous block read 36
2.12 Asynchronous broadcast based communication model 39
2.13 Waveform of control, data and state bus within one I/O cycle 45
2.14 FireWire asynchronous timing . 48
2.15 Asynchronous block read and write times (400 Mbps) 50
2.16 Asynchronous Broadcast Block Write 51
2.17 Broadcast protocol mean cycle time 52
2.18 Mean cycle time comparison between Broadcast and Asynchronous

protocols on dVRK . 53
2.19 Control system architecture with a fieldbus-bridge 56
2.20 Hardware architecture with prototype Ethernet to FireWire bridge . . 57
2.21 Prototype Ethernet-to-FireWire Bridge 58
2.22 Ethernet Frame Structure . 59
2.23 Finite State Machine for control loop, with num_node FireWire nodes. 62
2.24 Software Architecture . 63
2.25 Quadlet read transaction times on Xenomai 65

xvi

LIST OF FIGURES

2.26 I/O Time of FireWire and Ethernet/FireWire bridge for standard
dVRK setup . 67

2.27 Ethernet quadlet and broadcast read timing on Xenomai, Linux and
OS X . 69

2.28 Second generation IEEE-1394 FPGA board with an integrated Ether-
net port . 72

2.29 An example EtherCAT system . 74
2.30 EtherCAT slave test board: AM3359 76
2.31 EtherCAT timing performance: data size vs. cycle time 79
2.32 EtherCAT slave forwarding latency: number of nodes vs. cycle time . 80
2.33 EtherCAT performance: cycle time vs. number of nodes 81
2.34 Comparison of EtherCAT, FireWire Broadcast and Ethernet/FireWire

Bridge performance using data measured on physical hardware. . . . 83
2.35 Comparison of EtherCAT, FireWire Broadcast and FireWire Bridge

performance based on models . 83
2.36 Comparison of read buffer timing between FireWire broadcast and

EtherCAT protocol . 85

3.1 da Vinci Research Kit (dVRK) software control architecture 91
3.2 UML class diagram of interface software 97
3.3 ROS system publisher/subscriber latency test setup 101
3.4 ROS system publisher/subscriber latency tests 103
3.5 Communication latency in cisst, using ExecIn/ExecOut 104
3.6 Robot tele-operation control architecture 106
3.7 cisst/ROS bridge example . 108

4.1 Impedance Type Controller . 118
4.2 Plane forbidden region virtual fixture 120
4.3 Needle passing circular motion virtual fixture. 122
4.4 Knot tying virtual fixture . 124
4.5 Block diagram showing hardware/software connection 126
4.6 Test setup for needle passing task . 127
4.7 Test setup for suturing task . 128
4.8 Boxplots of needle passing task completion time 132
4.9 Comparison of needle passing trajectories 133
4.10 Boxplot of total operator workload 134
4.11 TLX survey radar plot for needle passing task 134
4.12 Boxplots of knot tying task completion time versus trial number . . . 137
4.13 TLX survey radar plot for knot tying task 138

5.1 Teleoperation System Architecture Overview 146
5.2 Screen shot of the operator view in assisted mode. 153
5.3 Block diagram showing hardware and software components in the system154

xvii

LIST OF FIGURES

5.4 Cutting test setup . 156
5.5 da Vinci master console and WAM robot with test blanket setup . . . 157
5.6 Boxplots showing task completion time of cutting sub-task 163
5.7 Boxplots of total operator workload from TLX survey 165
5.8 TLX survey radar plot of workload 166
5.9 Comparison of freehand and assisted tape cutting 168
5.10 Velocity profile of user 03 trials . 170

xviii

Chapter 1

Introduction

A scalable and real-time capable infrastructure is required to enable high degrees-

of-freedom systems that need high performance control and force rendering. The

specific platform that motivates this thesis work is the open research platform da

Vinci Research Kit (dVRK) [48]. The next section presents the rationale for develop-

ing a research platform based on the da Vinci Surgical System R⃝ (Intuitive Surgical,

Inc., Sunnyvale, CA), which is called the da Vinci Research Kit (dVRK). This is

followed by a discussion of the challenges involved in designing such a system, in-

cluding an overview of a system first developed in 2004. This leads to a discussion

of different robot controller architectures, which culminated in the selection of a cen-

tralized computation and distributed Input/Output (I/O) architecture for the dVRK.

These sections are provided as background information, as this architectural decision

preceeded the work described in this thesis. The contributions of this thesis, with

1

CHAPTER 1. INTRODUCTION

respect to the system architecture, are presented starting with Section 1.4.

1.1 The da Vinci Research Kit (dVRK)

Minimally Invasive Surgery (MIS) has the benefits of smaller incisions and faster

recovery times. However, traditionally, surgeons face the challenge of a limited and

constrained workspace and loss of direct visualization. Some of the limitations have

been resolved by the use of robotic devices such as the telesurgical da Vinci Surgical

System. Due to the benefits of such systems, telesurgical robotics has been an active

research field since the mid-1990s.

While open-source robot software, such as Robot Operating System (ROS) [71],

has seen widespread adoption, there are relatively few open hardware/software plat-

forms in widespread use within the robotics research community, especially for telesur-

gical robots. A platform is considered to be “open” if it allows researchers to modify

all levels of the control software. The lack of such open platforms means that it

requires significant system integration effort to create a research system and a lot of

the research experiments and results are not easily replicated by other researchers.

Telesurgical systems require master input devices, preferably with haptic feedback,

and slave (or patient-side) robots with the ability to actuate surgical instruments.

Currently, researchers typically choose haptic input devices with open interfaces such

as Phantom Omni (now Geomagic Touch) [61] or an Omega haptic interface (Force

2

CHAPTER 1. INTRODUCTION

Dimension Inc., Switzerland) [53]. On the slave side, researchers have tried to use

non-medical robots with open interfaces, such as the Whole Arm Manipulator (WAM)

from Barrett Technology, Inc. (Cambridge, MA) [79], the KUKA-DLR Lightweight

Robot arm [6], the UR5 or UR10 robots from Universal Robots A/S (Odense, Den-

mark), or use customized robots as slave robots [30]. Recently, the Raven II research

robot [32] has been disseminated to several institutions and is available for purchase

from Applied Dexterity, Inc. (Seattle, WA). The Raven II enables researchers to

modify the real-time servo control code, which runs on a Linux Personal Computer

(PC) and communicates with the hardware (e.g., motors and encoders) via a Univer-

sal Serial Bus (USB) interface. An open telesurgical platform can be created from

these components, but would likely involve a lot of effort and would not present a

unified control framework.

One alternative is to create a research platform from an existing telesurgical sys-

tem, such as the da Vinci Surgical System. The da Vinci Surgical System can be

configured (by the manufacturer) to provide a read-only research interface to both

the master and slave manipulators [24]. While useful for some research projects (e.g.,

skill assessment [1, 91]), this interface does not enable modification of the control

algorithms and therefore cannot support research in new control methods, including

autonomous or semi-autonomous control. This robot mechanical hardware is be-

coming increasingly available to researchers via the reuse of retired first generation

systems. Because the electronics and software are either proprietary (closed) or not

3

CHAPTER 1. INTRODUCTION

Stereo Viewer

Footpedal Tray

da Vinci Master Tool
Manipulators (MTMs)

da Vinci Patient Side
Manipulators (PSMs)

IEEE-1394
Controllers

Linux Control PC

Stereo
Camera

Figure 1.1: Research da Vinci System at JHU: two 7-dof Master Tool Manipulators
(MTMs) and two 7-dof Patient Side Manipulators (PSMs), for a total of 28 axes,
controlled by eight custom board sets (packaged in 4 enclosures), each consisting of
an IEEE-1394 FPGA board mated with a Quad Linear Amplifier (QLA).

included, it motivates the development of a common, open-source, high-performance

electronics/software platform for the research community. This thesis concerns the

development of the architecture and some use cases towards its application to semi-

autonomous teleoperation.

4

CHAPTER 1. INTRODUCTION

1.2 Challenges of a scalable and high per-

formance architecture for dVRK

Despite the fact that the mechanical hardware is readily available, the system

mechatronics design faces several challenges due to the high degrees of freedom in-

herent in the system as well as the design goal to provide a system that enables

researchers to easily implement new algorithms at any level of control.

As shown in Figure 1.1, a da Vinci system comprises multiple robotic manipula-

tors, where each of them can have up to 7 DOFs. In a dVRK setup with two Master

Tool Manipulators (MTMs) and two Patient Side Manipulators (PSMs), the system

has a total of 28 DOFs, and the number of total DOFs can be as high as 39 DOFs

including a third PSM and the Endoscopic Camera Manipulator (ECM) in a full da

Vinci System setup. This high degrees of freedom requires a solution with high scal-

ability. In fact, back in 2004, a previous version of Industry Standard Architecture

(ISA)-based controllers, called the Low Power Motor Controller (LoPoMoCo), were

used to drive two MTMs and two PSMs. In this design, all I/O signals, including

command and feedback signals, were transmitted in raw analog form between the

robot and the control computer over a long cable. A custom I/O device circuit board

converted these analog sensor signals into digital data and transformed robot con-

trol commands to analog signals; it was directly attached to the computer via the

parallel ISA bus. However, parallel buses limit the number of I/O channels that can

5

CHAPTER 1. INTRODUCTION

be connected to one control computer. This ISA-based, centralized I/O design could

only control four channels (DOFs) per board due to physical size limitations, and it

was discovered that most industrial-grade computers could only reliably drive up to

four ISA cards (two manipulators). As a result, with these controllers a teleoperated

application involving more than two manipulators needs multiple computers to run,

which not only makes the control software design more complicated, but can also

introduce delay and negatively affect control performance. This challenge led to a

new design with distributed I/O running on a high speed serial field bus.

The high degrees of freedom raises another challenge in terms of control perfor-

mance. At the servo level, a control loop is typically closed at 1 kHz or higher to

achieve a good performance. With the exponential growth of computation power,

the computation load of a servo controller with even tens of channels can be finished

well within 1 ms. However, the I/O time together with software overhead of such a

system can potentially break the timing limit. While in a centralized I/O design, I/O

time is less of a concern because the computer has direct bus access, it is a challenge

in a system with distributed I/O.

The third challenge comes from the goal to provide researchers easy access to all

levels of control in a familiar environment. At the time the distributed I/O system

was designed, existing off-the-shelf motor controllers did not allow modification of

the low-level servo control algorithm. With the assumption that researchers will

be familiar with a Linux development environment, preferably with either the RT-

6

CHAPTER 1. INTRODUCTION

Preempt patch or a real-time extension such as Xenomai [29] or RTAI [60], a system

architecture that enables all software to be implemented in such environment was

preferred.

1.3 Overview of Architectures

Several design architectures were considered during the design of the controllers for

the da Vinci Research Kit. This section provides an overview of these architectures

as background material for the work presented in this thesis and is based on the

content presented in [49] by Kazanzides and Thienphrapa. Figure 1.2 presents these

architectures, which can be categorized based on whether the computation and I/O

are centralized or distributed.

Historically, processing and network limitations favored a centralized computation

and I/O approach (Figure 1.2a), where all robot cables connect directly to I/O boards

inside a central computer via its high-speed internal bus (originally ISA, now Periph-

eral Component Interconnect (PCI) or Peripheral Component Interconnect Express

(PCIe)) as in the initial design. One advantage of this architecture is that the entire

control system can be implemented on a familiar development platform (PC), rather

than requiring expertise in embedded systems programming. The disadvantage, how-

ever, is that a significant amount of cabling is needed to connect the robot sensors and

actuators to the electrical interfaces inside the PC, which reduces reliability, increases

7

CHAPTER 1. INTRODUCTION

Overview of Architectures

Cite: Kazanzides, Peter, and Paul Thienphrapa. "Centralized processing and distributed I/O for robot control."
Technologies for Practical Robot Applications, 2008. TePRA 2008. IEEE International Conference on. IEEE, 2008.

7

High‐level
control

Low‐level
control

Electrical
I/O

Robot
Hardware

High‐level
control

Low‐level
control

Electrical
I/O

Robot
Hardware

High‐level
control

Low‐level
control

Electrical
I/O

Robot
Hardware

a) Centralized computation and I/O

b) Distributed computation and I/O

c) Centralized computation and distributed I/O

PC Embedded Hardware

Figure 1.2: Three common architectures for robot control.

signal noise, and makes reconfiguration difficult, especially if it is required to open

the PC chassis. Another disadvantage, as pointed out earlier, is that the physical

form factor of a control computer and its electronic drive capability may limit the

number of channels a single computer can control. The architecture, therefore, does

not scale well and does not meet the requirement to control a full da Vinci research

system.

An alternative approach that scales well is to distribute both computation and I/O

(Figure 1.2b), where high-level control is performed on a single computer, with low-

level control executed on embedded microprocessors connected via a serial network

such as Controller Area Network (CAN), Ethernet, or RS-485. This approach does not

8

CHAPTER 1. INTRODUCTION

require a high-performance (i.e., low latency and high bandwidth) network because

the high-level control typically executes at hundreds of Hertz and provides setpoints

to the low-level control at this rate instead of directly commanding actuator torque

or velocity. This design can easily scale to a large system by adding more controller

boards to new manipulators. Meanwhile, distributed I/O helps to clearly confine most

wires to local joint sites and a co-located microprocessor guarantees high-performance,

low-level control. Nevertheless, a researcher needs to have embedded programming

knowledge if he/she intends to change low-level control algorithms and may have to

upgrade the embedded microprocessors’ firmware every time a change is made.

The availability of high-speed serial networks with real-time performance, such as

Ethernet for Control Automation Technology (EtherCAT), SErial Real-time COmmu-

nication System (SERCOS) III, and IEEE-1394 (FireWire), has enabled an approach

that can be called centralized computation and distributed I/O [49]. In this approach

(Figure 1.2c), the real-time communication network allows all control computations

to be implemented on a high-performance computer that contains a familiar software

development environment (e.g., Linux, with or without real-time extensions), while

preserving the advantages of reduced cabling by distributing the I/O. This allows a

researcher to develop both high-level supervisory control and low-level joint control

in the same development environment, thus enabling high flexibility in control al-

gorithms while maintaining precise real-time hardware control. This is particularly

useful for developing haptic interactions and virtual fixtures. Several systems have

9

CHAPTER 1. INTRODUCTION

adopted this architecture. The WAM [78] distributed motor amplifier I/O boards

to each joint and interconnected them using CAN bus. Pratt reported a system

that uses IEEE-1394a to communicate between a control PC and distributed Field-

Programmable Gate Array (FPGA) boards in a 12-axis biped robot system [68].

The MIRO surgical robot developed by the German Aerospace Center (DLR) uses

SpaceWire, a 1 GB/s full duplex serial link with latency less than 20 us, to con-

nect distributed FPGA-based I/O boards to a centralized control PC, running the

QNX real-time operating system [31]. Among the Ethernet-based real-time protocols,

EtherCAT appears to be gaining the widest deployment. As an example, Willow

Garage used EtherCAT to close a 1 kHz loop between a control PC (with real-time

operating system) and the encoders and motors in its two-armed mobile robot system

(PR2) [75].

1.4 Proposed Approach

The centralized processing and distributed I/O architecture was implemented by

designing custom electronics that uses an FPGA to provide direct, low-latency, inter-

faces between the high-speed serial network (IEEE-1394a, in our case) and the I/O

hardware. The FPGA board is referred to as IEEE-1394 FPGA board or slave node,

given that it is a node on the FireWire bus. IEEE-1394a was chosen because it is

widely available, has high performance (up to 400 Mbps), supports daisy-chaining at

10

CHAPTER 1. INTRODUCTION

the physical layer, and there is ample documentation [2] to enable implementation of

the link layer protocol on an FPGA. The potential disadvantages of IEEE-1394a are

the lack of high-flex cables and the length limits that make it difficult to route cables

inside a robot arm. These disadvantages are not relevant for controlling the da Vinci

robot, since it is not feasible to place the controller boards inside the robotic arms.

As stated before, the challenge of a centralized processing and distributed I/O de-

sign is that the existence of software overhead could potentially break the timing limit

on a large system with many controller boards. In the case of a FireWire transaction,

even though the data transmission is fast (less than 1 µs for a packet smaller than 50

bytes), the operating system introduces a large software overhead in each FireWire

transaction. That said, the key strategy to get an efficient I/O is to minimize number

of transactions from the control computer. This thesis proposes a broadcast based

protocol that reduces the number of transactions to three regardless of the number

of boards under control. The details of this protocol are presented in Section 2.5.

Another contribution of this thesis is the implementation of an Ethernet/FireWire

bridge that enables high-bandwidth control of multiple axes over standard Ethernet,

as described in Section 2.6.

In addition, this thesis contributes to a component-based multi-threaded software

architecture for servo and mid-level control of the robot system using the cisst library,

as described in Chapter 3. For high-level interface, an additional component is devel-

oped to bridge the low level control to a publisher/subscriber based ROS environment.

11

CHAPTER 1. INTRODUCTION

This hybrid approach is proposed for the scalability of a multi-threaded, component-

based architecture that has low latency and high performance for real-time control

while still benefitting from the flexibility and interactivity (e.g., scripting languages

and MATLAB interfaces) available via a publisher/subscriber ROS interface.

1.5 Applications

Powered by the proposed control/software architecture, the da Vinci Research Kit

can achieve a servo update rate of 3 kHz or higher even with a full system setup with

39 active axes from 2 master manipulators (7 DOFs), 3 slave manipulators (7 DOFs),

and 1 endoscope control arm (4 DOFs). The da Vinci master manipulators are ca-

ble driven, back-drivable impedance type robot arms. This design, coupled with the

proposed high performance control architecture, makes it an ideal research platform

for haptic rendering and virtual fixture assistance. In this thesis, two potential ap-

plications using this platform are examined: one (Chapter 4) is in the medical space

using a da Vinci to evaluate the benefits of virtual fixtures in a suturing task for

novice users and the other (Chapter 5) is a space application involving time-delayed

teleoperation of a robot for refueling aging satellites.

12

CHAPTER 1. INTRODUCTION

1.6 Broader Impact

The application of the system is not limited to the two presented in this thesis. At

the time of writing, with more than 25 dVRK systems installed in research institutions

across the world, the proposed architecture has been used by researchers to investigate

a wide range of applications and research areas. For example, Murali and Sen et al.

[65, 83] from the University of California Berkeley used the system to investigate

automating cutting and suturing tasks using learning by observation; Mohareri et

al. [63] from the University of British Columbia explored the applicability of an

asymmetric force feedback control framework for bimanual robot-assisted surgery and

Wang et al. [95] from Vanderbilt University and Johns Hopkins University updated

virtual fixtures from exploration in force-controlled model-based telemanipulation.

1.7 Overview of Contributions

The thesis is composed of the following contributions.

1.7.1 A broadcast-based fieldbus communication

protocol

Within the proposed architecture, we developed a broadcast based communica-

tion protocol that reduces I/O communication time and scales well with the number

13

CHAPTER 1. INTRODUCTION

control nodes by minimizing the number of transactions initiated by the control com-

puter. Using the protocol, a full da Vinci system with 12 nodes can close its servo

loop at up to 3 kHz.

1.7.2 A bridge design to enable real-time control

over a conventional network

We have designed a real-time control network based on Ethernet and FireWire,

where Ethernet provides a convenient, cross-platform interface between a central con-

trol computer and a FireWire subnetwork that contains multiple distributed I/O con-

trol boards. This design benefits from the availability of real-time Ethernet drivers

and utilizes the broadcast protocol for real-time performance. This bridge design

approach can be extended to other fieldbuses.

1.7.3 An analytical model of the timing perfor-

mance for the proposed protocols and Ether-

CAT

We developed an analytical model for the timing of the proposed protocols (i.e.,

broadcast-based protocol without and with Ethernet) and for EtherCAT. Further, we

estimated the model parameters from experimental data and then used the models

14

CHAPTER 1. INTRODUCTION

to compare our proposed protocols to the state-of-the-art EtherCAT fieldbus. The

comparison shows that our proposed protocols have comparable performance.

1.7.4 A scalable and extensible software architec-

ture

The dVRK software architecture is composed of a component-based low and mid

level control for performance and a high-level API using ROS interfaces connected

via bridge components. This thesis contributed elements of this architecture. Specif-

ically, it develops a design pattern for managing multiple controller boards over a

single shared resource (i.e., the fieldbus). The design keeps the boards as separate

objects, while still allowing efficiency of broadcast-based transactions that, by ne-

cessity, combine data to/from all boards. It also contributes ROS interfaces via a

cisst-to-ROS bridge component. The bridge component was developed with help

from Anton Deguet.

1.7.5 Virtual fixtures for suturing and knot tying

tasks

We have implemented virtual fixtures (VF) to assist users during the needle pass-

ing and knot tying sub-tasks on a teleoperated robotic system. A user study has

15

CHAPTER 1. INTRODUCTION

been conducted and the result indicates that VF can improve users’ performance in

terms of better needle exit accuracy in a needle passing sub-task and shorter task

completion time and fewer slips in a knot tying subtask.

1.7.6 Virtual fixtures for time-delayed teleopera-

tion for satellite servicing

The dVRK master console has been used to teleoperate a WAM robot in a satel-

lite servicing task under 4 seconds video and telemetry time delay. Within this ongo-

ing project, we implemented a model-based telemanipulation framework with haptic

feedback and augmented reality and performed a multi-user study to demonstrate

that the assistance can significantly reduce task completion time and overall opera-

tor workload. Specific contributions include a user interface mechanism for intuitive

specification and adjustment of a line virtual fixture on the master console, as well

as the multi-user study itself.

16

Chapter 2

System Architecture

This chapter presents research contributions related to system architecture. The

first contribution is a broadcast-based FireWire communication protocol for scalable

real-time performance. Then we describe a bridge design that enables real-time con-

trol over a conventional Ethernet interface by leveraging the previously proposed

protocol. Timing performance of both designs are evaluated analytically and experi-

mentally and compared to EtherCAT.

2.1 Introduction and Overview of Thesis

Contributions

Our goal is to have a scalable, high-performance and programmer friendly system

that can support robotic systems with many degrees of freedom (DOFs). A motivating

17

CHAPTER 2. SYSTEM ARCHITECTURE

example is the full da Vinci system that consists of six robot arms, for a total of 39

DOF. As discussed in Chapter 1, a centralized computation and distributed I/O

approach was selected because it allows all control algorithms to be implemented on

a PC in a familiar software development environment while preserving the advantage

of reduced cabling by distributing the I/O. It is not surprising that such a system

requires not only careful fieldbus selection, but also an optimized communication

protocol and firmware, as well as a software architecture that can both scale as systems

grow and interface with high level control software for easy programming.

This chapter begins with the historical context that served as the starting point

for the work described in this thesis, which led to the selection of a distributed

architecture based on the IEEE-1394a (FireWire) fieldbus. This is followed by a

survey of fieldbus options, including FireWire, and a description of the FireWire-

based controller that had been developed prior to the start of this research. Analysis

of the initial implementation revealed limitations, especially when attempting to scale

to a system with 39 DOF. This led to the development of two contributions in this

thesis:

1. A broadcast-based communication protocol for scalable real-time performance.

This protocol utilizes the broadcast and peer-to-peer transfer capabilities of

FireWire bus and scales well with increase of nodes under control. This work

was published in [19]. Credits: Zihan Chen.

2. A bridge design to enable real-time control over a conventional Ethernet inter-

18

CHAPTER 2. SYSTEM ARCHITECTURE

face. The control PC connects to the bridge board via Ethernet, which forwards

command packets to control nodes on the FireWire bus, collects robot status

and sends them back to the PC. The work was published in [70] Credits: Devel-

oped in a collaboration with Long Qian. The general concept and design was

developed by Zihan Chen. Long Qian implemented the initial bridge firmware

and assisted with experiments.

Although these two contributions solved the identified problems, it is desirable

to re-evaluate the use of FireWire when compared to other alternatives available

today, which were reviewed in the fieldbus survey. In particular, we consider the

popular EtherCAT fieldbus, which at the present time (2017) is considered to be

a leading fieldbus for real-time control. We conclude with a comparative analysis,

based on analytical models and experimental data, of EtherCAT to our FireWire

and Ethernet/Firewire distributed systems, which is the third contribution of this

chapter. Credit: Zihan Chen conducted the experiment and analysis.

2.2 Historical Context

The work described in this thesis began in 2011, when several institutions ex-

pressed interest in replicating the research da Vinci system developed at the Johns

Hopkins University (JHU). At that time, however, the system was nearing obsoles-

cence, as it relied on custom controller boards, called the Low Power Motor Controller

19

CHAPTER 2. SYSTEM ARCHITECTURE

(LoPoMoCo) [46], that were developed in 2004 and interfaced to a PC via the ISA

bus. The LoPoMoCo had initially been developed to control a small snake robot

and, subsequently, an updated controller based on IEEE-1394a (FireWire) had been

developed for a newer version of the snake robot. FireWire had been selected due

to its fast transmission speed, deterministic media access control protocol and its

support of daisy-chain topology. Some early results from using this controller with a

7 dof snake robot were presented in 2008-2011 [49, 85, 86, 87]. This experience led

to the development of a general-purpose FireWire-based motor controller, consisting

of an FPGA board and a Quad Linear Amplifier (QLA) board. This FPGA/QLA

controller was well-suited to control the da Vinci robot and thus was selected as the

controller to use when replicating the research da Vinci system, which has since been

called dVRK.

2.3 Fieldbus Survey

Although FireWire was selected for the dVRK controller, it is prudent to keep

abreast of the state-of-the-art among real-time control fieldbusses, which is the goal

of this section.

The beginning of fieldbus dates back to the first industrial networks in the 1970’s

[88]. It creates a network where field devices such as sensors, actuators, controllers,

human-machine interfaces, etc., are connected. With over 30 years of history, a

20

CHAPTER 2. SYSTEM ARCHITECTURE

great number of fieldbus solutions have been proposed to meet the requirements of a

variety of applications. These fieldbus solutions differ in their transmission medium,

maximum transmission speed, medium access control protocol, physical connector,

and latencies. For the distributed I/O and centralized processing architecture that

we adopted, both input data and control command data are transmitted from and to

the control nodes over the fieldbus within the high-frequency, low-level control loop

running on a control computer. To be able to close the loop at more than 1kHz, the

fieldbus must have a high-enough bandwidth and low latency by design. In the rest

of this section, a few fieldbus candidates including CAN, USB, Ethernet, EtherCAT,

and FireWire are surveyed.

CAN bus was designed at Robert Bosch GmbH in mid 1980s [25] to fulfill the

requirements of automotive applications. Its message-based protocol design allows

micro-controllers and devices to communicate with each other without a host com-

puter and is ideal for control purposes and has been used in robot manipulators like

the 7 DOF WAM robot [78]. Despite this, CAN bus can only transmit data up to

1 Mbps (i.e., 1000 bits or 125 bytes per ms), which largely limits its scalability in

real-time control applications with multiple manipulators. In fact, even for the 7

DOF WAM robot, the CAN bus transmission time alone takes 850 µs [4] without PC

software latency, which makes it challenging to meet a 1 kHz control update rate.

USB is an industrial standard, designed for computer peripherals (e.g., keyboards),

that defines cables, connectors and communication protocols. The earlier USB 1.x

21

CHAPTER 2. SYSTEM ARCHITECTURE

version could only transfer data at low-speed (1.5 Mbps) and full-speed (12 Mbps),

but the newer USB 2.0 standard can transfer data at high-speed (480 Mbps), which

is ideal for control communication with large data size. In a USB system, there two

types of devices: a single host device and up to 127 USB slave devices. The devices

are connected to the host via USB interconnect in a tiered star topology as shown

in Figure 2.1. The hub device expands a single USB port into several so that more

slave devices can connect to a host device. The host device manages the bus and

initiates all communication, and the slave devices only respond when queried. This

design implies that a slave device cannot communicate with another slave device

directly, therefore, it lacks peer-to-peer transfer capability. In a control application,

the number of transactions from the control PC (the USB host) increases linearly

with the number of slave nodes under control. Moreover, as shown in Figure 2.2,

data is transferred over the USB bus in frames, whose duration is set to 1 ms for

low-speed or full-speed transactions and 125 µs for high-speed micro-frames in one

direction. Hence, the minimum round-trip transaction latency is 250 µs for the high-

speed bus, without considering software latency. It may be fast enough to control a

small number of nodes, however it does not scale well. For these two reasons, USB is

not suitable for real-time control of large systems.

Similar to USB, IEEE 802.3 (Ethernet) has the advantage of market dominance

and sufficient bandwidth (10/100/1000 Mbps) for high performance communication.

However, the standard Ethernet protocol introduces some challenges. First, the orig-

22

CHAPTER 2. SYSTEM ARCHITECTURE

USB Host

Slave DeviceHubSlave Device

Slave Device Hub

Slave Device Slave DeviceSlave Device

Figure 2.1: USB tiered star topology: a host device, multiple slave devices and USB
hubs

Figure 2.2: USB transaction frame and micro-frame latencies [54]

23

CHAPTER 2. SYSTEM ARCHITECTURE

inal Ethernet was a half-duplex design and used a Carrier Sense Multiple Access/

Collision Detection (CSMA/CD) media access control (MAC) protocol. When a

node on the Ethernet detects a collision, it drops the sending/receiving packet, waits

for a random period of time based on a binary exponential backoff algorithm and

then tries to retransmit. The backoff algorithm controls the medium load, but intro-

duces the possibility of random transmission time; this non-deterministic behavior is

not suited for real-time control. One solution with half-duplex Ethernet is to use an

isolated network with a self defined media access control algorithm that avoids all

potential collisions [50, 81]. The non-deterministic nature of CSMA/CD is less of an

issue today, as most Ethernet installations run in full-duplex mode and use point-to-

point connections between nodes, leading to a “star” topology. This topology does

not scale well, and typically requires high-speed switches to support a daisy-chain

connection.

Several Ethernet variations have been developed and employed in some industrial

control applications. Ethernet POWERLINK (ethernet-powerlink.org) ensures its

real-time determinism by extending the standard Ethernet Data Link Layer with an

additional bus scheduling mechanism. Each POWERLINK network contains exactly

one Managing Node (MN) responsible for managing the scheduling of the basic bus

cycle and several application specific Controlled Nodes (CN). As shown in Figure

2.3, the MN starts a bus cycle by sending out a Start of Cycle (SoC) frame to all

nodes, then polls data from each CN in the isochronous phase and finally sends out

24

CHAPTER 2. SYSTEM ARCHITECTURE

a Start of Asynchronous (SoA) frame to allow CNs to transmit non-time critical

data in the asynchronous phase. Performance-wise, Baumgartner and Schoenegger

[5] reported a 250 µs cycle time on a system with 1 MN and 3 CNs on Fast Ethernet

(100 Mbps). Another variation is the third generation SERCOS (IEC1491) [58].

SERCOS was created in the 1980s by a consortium of machine-tool and numerical-

control manufacturers and designed for high-speed serial communication and motion

control. Traditionally, its transmission medium is optical fiber with transmission

rates of 2/4/8/16 Mbps, but its recent combination with 100 Mbps Ethernet has

endowed it with the ability to cycle at 250 µs with 70 drives (12 bytes). A relatively

new real-time Ethernet protocol is EtherCAT, which was first demonstrated in 2003.

Compared with a time-division access protocol like POWERLINK, the EtherCAT

master node pre-configures data input and output of each slave node on the bus and

only transmits one assembled Ethernet packet. Slave nodes extract input data from,

fill in output data to and forward data packets on the fly with the aid of dedicated

hardware and software, much like a train going through stations (slave nodes). The

EtherCAT Technology Group reported that it can communicate with 100 Servo-Axis

nodes (each with 8 byte input and output) in 100 µs. In 2010, EtherCAT was deployed

on the multi-DOF Personal Robot 2 (Willow Garage, Palo Alto, California) [96].

IEEE-1394 (FireWire) is a modern high-speed serial network that supports up

to 400 or 800 Mbps for 1394a or 1394b, respectively. Compared with Ethernet,

IEEE-1394 supports fair bus access and is deterministic. The protocol supports real-

25

CHAPTER 2. SYSTEM ARCHITECTURE

Figure 2.3: Ethernet Powerlink bus cycle with three phases: 1) Start Phase, 2)
Isochronous Phase, and 3) Asynchronous Phase [15]

communication with guaranteed 125 µs bus cycles in isochronous mode and fast

concatenated asynchronous transactions. At the physical layer, a FireWire chip re-

peats data signals; this design allows multiple FireWire nodes to be connected in a

“star” topology or daisy-chained together. The latter topology is desired as it reduces

the number of cables from the control PC to the robot to one, which allows a sig-

nificant cabling reduction compared to connecting a separate network cable to each

I/O board. FireWire has been shown to be an effective solution for real-time control

[80, 100] and by its use in fly-by-wire systems [3]. A more detailed description of the

FireWire protocol is presented in Section 2.4.1 to give sufficient background for the

work presented in this thesis.

2.4 Distributed I/O System

Our distributed I/O system, shown in Figure 2.4, is a complete open source design,

with the schematics, layout, and FPGA firmware (Verilog) available on GitHub. The

26

http://jhu-cisst.github.io/mechatronics

CHAPTER 2. SYSTEM ARCHITECTURE

controller consists of two boards, an IEEE-1394 FPGA board and a Quad Linear

Amplifier (QLA), that are mated via two 44-pin connectors. Most of the 88 signals

are connected directly to I/O pins on the FPGA; the rest are used for power (+3.3V,

+5V) and ground. This design allows researchers to create alternate I/O boards

(to replace the QLA) to satisfy different hardware requirements, or to design a new

FPGA board to introduce a different communication network.

Figure 2.4: IEEE-1394 FPGA board and Quad Linear Amplifier (QLA)

The IEEE-1394 FPGA board contains a Xilinx Spartan-6 XC6SLX45 FPGA,

configuration PROM, IEEE-1394a physical layer (PHY), two IEEE-1394a 6-pin con-

nectors, a low-speed USB interface (virtual COM port), and required power supplies.

It contains two 44-pin connectors that provide power and FPGA I/O to a compan-

ion board, such as the QLA. It also contains a 16-position rotary switch for board

identification.

The QLA board provides all hardware required for current (torque) control of

27

CHAPTER 2. SYSTEM ARCHITECTURE

four DC brush motors, using a bridge linear amplifier design (Figure 2.5). Each

of the four channels contains the following components: one 16-bit digital-to-analog

converter (DAC) to enable the FPGA to set the desired motor current, two 16-bit

analog-to-digital converters (ADCs) to digitize the measured motor current and an

external analog sensor (e.g., potentiometer), differential receivers for one quadrature

encoder with A, B, and Z (index) channels, two OPA-549 power operational amplifiers

(op amps) to provide bi-directional control of a motor from a single power supply (up

to 6.25 Amps at up to 48 Volts), digital inputs for one home and two limit switches

(these can also be used as general-purpose inputs) and one digital output. The board

also contains a software-controlled safety relay, which allows the software to disable

the motor power supply, and two heat sink temperature sensors.

This is a general-purpose mechatronics system, but currently its primary appli-

cation is to control research systems based on the mechanical components of the

first-generation da Vinci R⃝ Surgical System [17, 48], as shown in Figure 1.1. The

low-level control software is implemented on a Linux PC, which is connected via

a daisy-chain to several FPGA-QLA board sets, as illustrated in Figure 2.6. This

system has been replicated by the dVRK consortium and provided to more than

25 institutions, producing a research community around a common hardware and

software platform.

28

CHAPTER 2. SYSTEM ARCHITECTURE

Motor

AmplifierADC

DAC

Filter

Differential
Amplifier

Diff. Receiver

Pot

Enc

Sense
Resistor

Filter

+

Motor current

IEEE 1394
PHY

SPI

SPI
buffers

quad.

FPGA

read

 Power
Op Amp

-

 Power
Op Amp

-

ADC

Link Layer
Controller write

Figure 2.5: Block diagram of I/O devices (digital I/O, safety relay, and temperature
sensors not shown)

2.4.1 Introduction to IEEE 1394

The IEEE-1394 interface [34] is a high-speed, peer-to-peer, full-duplex fieldbus

with low overhead that is well suited for real-time control applications. It is a Control

and Status Register (CSR) architecture with a tree-like topology that supports up

to 64 nodes on a single bus. The IEEE-1394a physical medium transmits data at a

speed of up to 400 Mbps. In later specifications (IEEE-1394b), the bus can support

data transfers of 800 Mbps and even up to 3.2 Gbps.

As shown in Figure 2.7, FireWire supports two types of transactions: asyn-

chronous and isochronous. It operates based on a 125 µs bus cycle (8 kHz), which

is triggered by a cycle start packet followed by an isochronous period and then an

29

CHAPTER 2. SYSTEM ARCHITECTURE

Figure 2.6: Hardware architecture: one control PC and 8 IEEE-1394 FPGA/QLA
board sets controlling the 4 da Vinci manipulators (7 DOF each).

asynchronous period. An isochronous transaction running at 8 kHz has a reserved

bandwidth, and can only happen within the isochronous period. It uses a chan-

nel number to address its target nodes and requires no acknowledgment or response

packet. Despite its high frequency, an isochronous transfer has no guarantee of data

delivery and can suffer from cycle start packet time drifting. This makes it a nat-

ural choice for video and audio streaming applications, rather than for real-time

control. Asynchronous transactions can only occur in the asynchronous phase after

isochronous transactions have completed. Unlike the isochronous transactions, asyn-

chronous transactions use a 64-bit address for data transfer. The whole FireWire bus

network can be mapped into the 64-bit address space, with 10 bits for the bus num-

ber, 6 bits for the node number and 48 bits for the node address. An asynchronous

transaction is designed to be error free by requiring an acknowledgment packet for

each data transmission and a response packet for every asynchronous request. Often

it is split into two subactions: a request and a response, allowing other asynchronous

30

CHAPTER 2. SYSTEM ARCHITECTURE

subactions in between. Asynchronous subactions are separated by short idle periods

called subaction gaps (see Figure 2.7) for bus arbitration. Asynchronous transactions

are typically used for control commands and reliable message transmission.

Cycle N (125 us)

Cycle
N-1

Cycle
N+1

Cycle
Start Ch0 Ch1 ChN Async Async

Isochronous Period Asynchronous
Period

Cycle Start Isochronous Asynchronous (Packets)

Async

Subaction gaps

Figure 2.7: IEEE-1394 cycle with isochronous and asynchronous transactions

Similar to other network interfaces, the FireWire specification has defined four

protocol layers to simplify both the hardware and software implementations (Fig-

ure 2.8). Each layer defines a set of associated services. The bus manager man-

ages the FireWire bus configuration and other resources such as the channel number

and isochronous bandwidth. The transaction layer only provides service to software

drivers for asynchronous transactions including read, write and lock operations. The

link layer is in between the transaction layer and the physical layer. It translates

asynchronous requests and responses to FireWire packets and sends to the physical

layer. For isochronous transactions, the software driver will directly interact with

the link layer controller. Finally, the physical layer is the electrical and mechanical

interface for data transmission and reception. It also provides bus arbitration services

and ensures that only one FireWire node transfers data on the bus at a time.

31

CHAPTER 2. SYSTEM ARCHITECTURE

Physical Layer
 - Electrical and Mechanical Interface
 - Arbitration
 - Encode and Decode

Link Layer
 Packet Transmitter | Packet Receiver | Cycle control

Transaction Layer

Bus Manager
 - Isochronous
 Resource
 Manager
 - Cycle Master

 Software Driver
Bus Manager Interface Asynchronous Interface Isochronous Interface

Figure 2.8: IEEE-1394 4 layer protocol architecture

In prior work, Thienphrapa [85, 86, 87] developed firmware to control a snake robot

using asynchronous transmissions, initiated by the PC, to fetch and send data from

and to the FPGA boards. Furthermore, for efficiency considerations, asynchronous

transactions are implemented as concatenated transactions, where the acknowledg-

ment packet and response packet (if a read transaction) are sent back to the requesting

node without releasing the bus. Compared to split transactions, this eliminates the

need for the responding node to wait for the subaction gap (at least 10 µs) and ne-

gotiate for bus access. This design has also been used for the da Vinci Research Kit

[17, 48]. The following section presents experimental data to assess the performance

of the FireWire transaction types, which guides the design of a protocol to achieve

higher control performance.

32

CHAPTER 2. SYSTEM ARCHITECTURE

2.4.2 FireWire Transactions Timing Performance

2.4.3 System Performance

This subsection presents the performance measurement of concatenated asyn-

chronous read/write transactions, analyzes I/O versus computation ratio in a servo

control loop, and reveals the bottleneck of achieving better control timing perfor-

mance. All the data is collected on a Linux PC (FireWire chip Ricoh R5C832) with

a 3.2.0-49-generic kernel, Juju FireWire driver stack, and libraw1394 API library.

Timing data is queried using the gettimeofday function.

Figure 2.9 and Figure 2.10 show the time required for asynchronous block read

and write transactions initiated by the PC software, each based on 5,000 iterations.

The read and write payload sizes are 68 and 16 bytes, respectively, which match the

payloads used for the FPGA-QLA board set. Mean read and write times are 31.99

and 33.74 µs, with standard deviations of 12.02 and 8.56 µs, respectively. Thanks to

the concatenated implementation, the measured data is only half the value (around

60 µs, depending on the kernel) reported in [80].

The most straightforward protocol is to perform one asynchronous read (to obtain

feedback data) and one asynchronous write (to send control output) to each FPGA

board in each servo control loop. In this case, the total mean I/O time for a robot

33

CHAPTER 2. SYSTEM ARCHITECTURE

system with Nboards FPGA boards would be:

TI/O = (Tr + Tw) × Nboards, (2.1)

where Tr and Tw are the mean asynchronous read and write times, respectively. For

a da Vinci Research Kit with eight FPGA boards, the computed I/O time cost is

(32.22 + 34.13) × 8 = 531.12 µs. This number is consistent with data collected

experimentally, which has a mean time of 495.98 µs and standard deviation of 75.45

µs. Because servo loop computation time TC is very low (less than 40 µs for an 8-board

system), I/O time often takes over 90% of the minimum control period (Tc + TI/O)

and more than 50% of a 1 kHz control loop. This means that I/O performance is the

bottleneck and would make it difficult to: (1) control a more advanced system (e.g.,

a system with 16 FPGA boards) with a 1 kHz servo loop, or (2) control an 8 board

da Vinci system at frequencies greater than about 1.8 kHz.

2.4.4 Analysis

Figure 2.11 shows each step in an asynchronous read transaction, starting from

the call to the libraw1394 API function raw1394_read to the return of this function

call. The average 32 µs transaction time is comprised of two operating system calls,

two data transmission times, and data processing time on the FPGA. We are able to

measure the data transmission and data processing time in the FPGA, which is less

34

CHAPTER 2. SYSTEM ARCHITECTURE

Figure 2.9: Asynchronous Block Read (400 Mbps)

Figure 2.10: Asynchronous Block Write (400 Mbps)

35

CHAPTER 2. SYSTEM ARCHITECTURE

than 5 µs. This implies that the latency is mainly due to software overhead in the op-

erating system. An obvious inference is that in order to improve the I/O performance,

the best approach is to reduce the total number of transactions initiated by the con-

trol PC. This insight guides us to use an asynchronous broadcast transaction-based

solution, where we compensate for the lack of acknowledgment packets by embed-

ding an acknowledgment (actually, a sequence number) in the packets sent from the

FPGAs to the PC.

Requester
PC

Responder
FPGA

Start read

OS latency

Read request packet On-the-fly
Processing

Transmitting
ResponseRead response packet

OS latency

End read

Transmitting
Request

Figure 2.11: IEEE-1394 asynchronous block read includes two operating system
(OS) calls, data transmission time, and data processing time.

2.5 Broadcast Communication Protocol

This section presents one contribution of this thesis, which is the newly designed

high-performance communication model, including several optimizations to further

36

CHAPTER 2. SYSTEM ARCHITECTURE

improve performance, and discusses system characteristics, including protocol deter-

minism, system integrity and backward compatibility.

2.5.1 Transmission model

As shown in Figure 2.12, a servo control cycle starts with an asynchronous broad-

cast write packet from the PC, serving as query (or sync) command to all FPGA

boards. The payload of this packet contains two pieces of information: a sequence

number that increments every control cycle and a board exist mask that indicates

which boards are under control. The sequence number is used to ensure data integrity

and is discussed further in Section 2.5.3.2. The board exist mask is constructed in the

initialization phase. The Nth bit of the mask is set if the board with board ID N exists

and the user wants to control this board. After sending this packet, the PC software

sleeps for 5 ×Nboards µs, where Nboards is the total number of boards under control.

Upon receipt of this packet, each FPGA board uses the board exist mask to count

the number of boards (Nwait) that have a smaller board ID and are under control,

waits for 5 × Nwait µs, then transmits its status data using an asynchronous broad-

cast block write packet. This is a Time Division Multiple Access (TDMA) method,

similar to the isochronous transfers already present in the IEEE-1394 specification,

but scheduled with respect to the query command, which can have an arbitrarily

specified frequency. All broadcast packets are received and cached by every FPGA

node, so that all nodes maintain a copy of the entire robot status feedback. Upon

37

CHAPTER 2. SYSTEM ARCHITECTURE

awakening, the PC sends one asynchronous block read request to any node to fetch

this information. This node can be called a hub node, though it is important to note

that any FPGA node can serve this function. The PC software then performs the

control computations and broadcasts new command data for all FPGA boards. This

completes a servo control cycle. The key ideas behind this design are to reduce op-

erating system overhead by cutting the total number of transactions initiated from

the control PC, and to use broadcast packets to minimize the number of data packets

on the bus. In fact, the number of PC-initiated transactions (3 transactions) is now

independent of the number of FPGA boards (nodes) on the bus. The I/O time for

the broadcast protocol is:

TI/O_bc = TQ + 5µs × Nboards + TR + TW , (2.2)

where TQ, TR and TW are the time for query, block read and command write trans-

actions, respectively.

In theory, the PC could serve as the hub node and receive all status broadcast

packets directly, but we have found that this is not a reliable solution. In our ex-

periments, we detected a 2% packet loss when attempting to use the PC as a hub

node. We hypothesize that this is due to the use of a software driver to handle

asynchronous requests, which is inherently slower than a hardware-based (FPGA)

solution. We therefore disabled receipt of the broadcast packets by the PC and intro-

38

CHAPTER 2. SYSTEM ARCHITECTURE

duced the hub node concept to solve this problem. By design, all FPGA boards are

hub capable and the PC can read complete status feedback from any FPGA board

on the bus. We note, however, that a real-time kernel, such as RTAI [60], with a

real-time FireWire driver [100] could be another solution to prevent dropped packets.

PC

FPGA 0

FPGA 1

FPGA N

...
Hub

FPGA
1 2

3

PC sends broadcast query packet
FPGA broadcasts status packet in turn
PC reads all FPGA status from Hub FPGA

1 PC sends broadcast packet with command to all FPGAs.

FPGA broadcasts status packet in turn at a fixed offset..
Hub receives and caches all status packets.

2

3 PC reads all FPGA status back using asynchronous block read.

C ComputeW WriteR Read S Sleep Q Query

R C W SSQ SQ ...
Cycle N Cycle N+1

Figure 2.12: Asynchronous broadcast based communication model. Hub FPGA is
not a separate FPGA, but is any one of the N FPGA boards.

2.5.2 Bus optimizations

While the above protocol greatly improves the performance of the system, the

design incorporates several other optimizations, as detailed in this section. These

particular optimizations are feasible in a closed system (e.g., where there are no other

nodes on the FireWire bus) and could be omitted if necessary.

39

CHAPTER 2. SYSTEM ARCHITECTURE

Bus arbitration acceleration: Whenever the link layer controller wants to

transmit data to the FireWire bus, it sends an arbitration request to the physical

layer chip and the physical layer will in turn arbitrate for bus ownership. In the Fire-

Wire specification, the link layer controller can only issue priority or fair requests

for an asynchronous subaction. For these two types of requests, the physical layer

chip starts bus arbitration after it detects a subaction gap, which nominally is 10 µs

[2]. This subaction gap time limits the overall performance. But, because the link

layer is implemented in an FPGA, we are able to improve performance by issuing an

isochronous bus request to the physical layer chip, even though we intend to send

an asynchronous packet. In this case, the physical layer only waits for a 0.04 µs

isochronous gap before starting to arbitrate for the bus. In a standard FireWire sys-

tem, this is possible because an isochronous bus request is only issued when the bus

is performing isochronous transactions. In our design, it works because the time each

node starts transmitting is deterministic (e.g., based on the TDMA method described

above). This mechanism accelerates the bus arbitration process, improves bus band-

width usage, and breaks the limitation of using regular asynchronous transactions.

But, it assumes that we have complete control over the FireWire bus and can prevent

an “outside” node (e.g., a FireWire camera or hard drive) from interfering with this

protocol.

Disable cycle start packet: The cycle start packet is transmitted from the

cycle master node (i.e., PC) on the bus at 8 kHz to synchronize isochronous data

40

CHAPTER 2. SYSTEM ARCHITECTURE

transfers. Because we do not use isochronous transactions and, more importantly, to

avoid interfering with the broadcast write packets, the cycle master node capability

is disabled and no cycle start packet is issued on the bus. It is also reported [89] that

this optimization can increase asynchronous transaction performance by 5%.

Full speed broadcast packets: In the standard Linux kernel, the Juju FireWire

driver sets the asynchronous broadcast speed to 100 Mbps, as it is used during the

self-identification process and needs to support slower FireWire devices running at

100 Mbps. Given that all the boards are 400 Mbps capable, the broadcast speed can

be changed to 400 Mbps to shorten the data transmission time from the PC and yield

about a 4 µs performance gain, at the cost of having to modify and recompile the

FireWire driver source code.

2.5.3 System Characteristics

Besides high performance, our design has other system characteristics that favor

a network-connected centralized processing and distributed I/O control architecture.

2.5.3.1 Determinism

In a networked control architecture, determinism is beneficial and sometimes even

required. This means that given a certain bus state, the next bus state is completely

determined. This feature is extremely important when doing control at an extremely

high frequency, such as 5 kHz. In our design, the determinism is guaranteed by bring-

41

CHAPTER 2. SYSTEM ARCHITECTURE

ing optimizations on top of the IEEE-1394a specification and by not implementing

certain functionality in the FPGA FireWire module. The determinism of the system

includes using a fixed root node (the PC), data transmission synchronization via a

broadcast write packet from the control PC, and pre-configured bandwidth and offset.

By not implementing the bus manager layer on the FPGA nodes and not allowing

other types of FireWire nodes on the bus, we can be assured that the control PC

is the only node that can be bus manager, isochronous resource manager, and cycle

master and is therefore forced (by the IEEE-1394 specification) to be the root node on

the bus. This determinism also simplifies the procedure to disable cycle start packets.

Because the FPGA nodes do not initiate asynchronous transactions (the broadcast

asynchronous write packet is considered a “response” to the packet from PC), the

software running on the PC has complete control over what data, at what time, is on

the FireWire bus.

2.5.3.2 Error tolerance

Data integrity is crucial in a robot control application. This is especially true for

a medical robot that is designed to operate on patients. This is also the reason we

favored regular asynchronous read and write over fast isochronous transactions in our

previous design. For the same reason, we include three mechanisms to ensure data

integrity, even when using broadcast packets for which there is no acknowledgment

packet. The basic feature, a Cyclic Redundancy Check (CRC), is compulsory as it is

42

CHAPTER 2. SYSTEM ARCHITECTURE

specified in the IEEE-1394 standard. This provides a basic error detection mechanism.

A more important feature is to include data integrity information and a sequence

number (16 bits) from the PC write packet in the “response” broadcast packet from

each FPGA. This feature is a remedy for the lack of an acknowledgment packet for

asynchronous broadcast write packets. In a situation where the packet from the

PC is corrupted or the data is incorrect, the sequence number in the FPGA packet

is set to 0xFFFF; otherwise the received sequence number is returned. If the PC

software receives a response with an incorrect sequence number (including 0xFFFF),

it triggers a software error handling mechanism. Finally, the FPGA firmware includes

a watchdog that needs to be refreshed by an asynchronous broadcast write packet from

the control PC. This guarantees that in extreme cases (e.g., a software crash on the

PC), the FPGA board will disable the amplifiers and ensure that there is no power

to the robot system.

2.5.3.3 Backward compatibility

The new design greatly improves communication performance between the control

PC and FPGA and retains the support for asynchronous read/write transactions,

thereby remaining backward compatible.

43

CHAPTER 2. SYSTEM ARCHITECTURE

2.5.4 Experiments

This section experimentally examines the performance of the broadcast commu-

nication protocol using both the FPGA board and PC software. The measurement

data is compared to the prior asynchronous protocol described in Section 2.4.3.

2.5.4.1 FPGA hardware-based measurement

With a soft JTAG tool, we captured the data transmission on the FireWire bus

in one complete servo cycle, as shown in Figure 2.13. The blue section of the data

bus indicates that its value is changing and the LLC is either receiving (does not

mean the data is targeted at the FireWire node) or transmitting data from or to the

PHY chip. The counts at the top show the number of time cycles (clock is 49.125

MHz, 1µs = 49.125 cycles). The cycle starts with a broadcast quadlet (four-byte)

packet with less than 10 cycles. The total time for 8 FPGA boards to finish data

transmission is around 2,000 cycles (40.71 µs), with each board taking 250 cycles on

average (5.1 µs). After these transactions, an asynchronous read request, indicating

the start of the third phase, has triggered the asynchronous block read response packet

from the hub FPGA node. This asynchronous read, including the final ACK packet

from the addressed node to the control PC, takes 20 µs. However, this number does

not include operating system latency before the asynchronous read request is sent out

and the latency after the data packet has physically arrived at the PC hardware. The

time between the asynchronous block read (Async Hub packet) and the broadcast

44

CHAPTER 2. SYSTEM ARCHITECTURE

block write (PC Command packet) is PC computation time. Finally, the broadcast

command packet from the PC transmitting at 400 Mbps takes 160 cycles (3.26 µs).

PC Query
packet

Clock counts (49.125 Mhz)
 ctl: 2 bits control pins (LLC-Phy Interface)

 data: 8 bits data pins (LLC-Phy Interface)
 state: state number of FPGA state machine

Node 0
packet

Node 1
packet

... Node 7
packet

Async Hub
packet

PC Command
packet

Figure 2.13: Waveform of control, data and state bus within one I/O cycle

2.5.4.2 Model parameter estimation with PC software-based

measurement

While the measurement on the FPGA board is more accurate, it does not include

latencies introduced by the PC software, such as the operating system scheduling

delay. Thus, timing data measured from the PC is presented here. In the broadcast

protocol, 1) an asynchronous broadcast write, 2) an asynchronous read and 3) an

asynchronous broadcast write are involved. A detailed FireWire asynchronous timing

model is presented, analyzed and simplified. Timing data of these three transactions

are collected and modeled.

Timing models of these three types are then substituted into Equation (2.2) to

obtain a timing model for the dVRK system. The model is then verified with timing

45

CHAPTER 2. SYSTEM ARCHITECTURE

data collected on hardware with different numbers of boards. We also compare the

broadcast protocol performance with the asynchronous protocol. The measurement

of asynchronous block read and write times was initially reported by Thienphrapa

[86] but has been repeated here because the hardware and software are different.

The total timing of an asynchronous concatenated transaction call comprises of

a list of the basic elements as shown in Figure 2.14. These elements include the

software overhead (Tsw1) of sending a request from software to the FireWire card, the

subaction gap (Tgap), the bus arbitration time (Tarb), the asynchronous request packet

transmission time (Trequest), the acknowledge gap (Tack_gap), the acknowledge packet

transmission time (Tack), the asynchronous read response packet time (Tresponse) (if

the request is of type quadlet read or block read) and the software overhead (Tsw2)

from the FireWire device to the calling software. Equation 2.3 summarizes the total

timing cost.

Tasync = Tsw1 + Tgap + Tarb + Trequest + Tack_gap + Tack + Tresponse + Tsw2 (2.3)

Although an asynchronous concatenated transaction has many elements, it can

be simplified into a linear model in our application. The following analysis is for

an asynchronous block write transaction, but could be extended to other types of

transactions. The PC program initiates a blocking asynchronous block write by call-

ing raw1394_write. The operating system first constructs a FireWire packet with

46

CHAPTER 2. SYSTEM ARCHITECTURE

the specified payload and then transfers the packet to the FireWire card’s trans-

action layer interface via its PCI/PCIe bus. This period of time is captured in

Tsw1 = Tsw1_os + 8 × SZrequest/BWP CI , where Tsw1_os is the operating system over-

head, SZrequest is the size of the block write request packet in bytes and BWP CI is the

bandwith of the PC’s internal bus. For a block write request, it includes 6 quadlets

(24 bytes) overhead (header and CRC data) and the write data payload SZdata, i.e.

SZrequest = 24 + SZpayload bytes. Then, the FireWire card starts the FireWire bus

arbitration process by waiting for a subaction gap. Tgap represents the subaction gap

between different asynchronous transactions (See Figure 2.7), which is around 10 µs.

Tarb is the time for the FireWire bus arbitration process. In the arbitration process,

the node closest to the root node wins the arbitration. Given that the control PC is

guaranteed to be the root node and all FireWire transactions are initiated from the

control PC, the control PC is guaranteed to win the arbitration process within a small

fixed period of time. Trequest is the time cost of transmitting the asynchronous block

write packet on the FireWire bus and is given by Trequest = 8 ∗ SZrequest/BWF ireW ire,

where BWF ireW ire is the FireWire transmission bandwidth (400 Mbps in our case).

Tack_gap is a small fixed arbitration gap between 0.04 and 0.05 µs [2] as the recipient

of the request has guaranteed access to the bus and uses an immediate arbitration

service. The recipient then sends out an acknowledgment packet with size of 8 bits,

which takes around 0.02 µs. Tsw2 models the time from when the FireWire card

receives this acknowledgment packet to when the operating system returns from the

47

CHAPTER 2. SYSTEM ARCHITECTURE

raw1394_write function. As shown in the above analysis, all the items in equation

2.3 are either a constant time or a linear function of the payload size SZpayload; thus,

the sum of all the elements that contribute to Tasync can be modeled with a linear

function. This analysis is verified with experimental data.

Bus

Software

Arb Async Request Ack

Subaction
Gap

Ack
Gap

Subaction
Gap

Software
Overhead

Software
Overhead

Concatenated Asynchronous Read/Write Calls

Async Response

Read Request
Only

Figure 2.14: FireWire asynchronous timing

Figure 2.15 shows the raw transaction sampling time of asynchronous read and

write over the full range of data block sizes allowed at 400 Mbps speed. The block

sizes are measured in quadlets, as the standard requires the packet size to be aligned

at 32 bits. For each data size, 10,000 timing data were collected and the mean data is

reported. The data plots verified that asynchronous block read and write timing can

be modeled using a linear model with bandwidth and base latency as parameters.

T = Tlatency + 8 ∗ SZdata

BW
, (2.4)

where Tlatency is the latency introduced by software, FireWire bus arbitration as well

as packet overhead, SZdata is the payload size in bytes, and BW is the bandwidth,

in bits/sec (bps), for transmitting data in the PC internal bus and on the FireWire

48

CHAPTER 2. SYSTEM ARCHITECTURE

bus. The PC internal bus is significantly faster than the FireWire bus, so the limiting

factor is the FireWire bandwidth of 400 Mbps.

After a least square fitting process, the plots show base latencies (Tlatency) of about

27.04 us for reads and 28.22 us for writes. Further, the average speeds of reads and

writes (bandwidth) are 350.84 Mbps and 265.12 Mbps. Neither value reaches the

nominal 400 Mbps rate. Using Equation (2.4), the time of asynchronous block read

and write are:

Tbread = 27.04us + 0.022802 ∗ SZdata (2.5)

Tbwrite = 28.22 + 0.030175 ∗ SZdata (2.6)

The asynchronous broadcast write request is sent out to the FireWire bus by

calling the raw1394_start_write function. Figure 2.16 shows that the average time

cost is 2.51 µs with a standard deviation of 2.71 µs. Note that this value is only

the time cost for calling the function and does not include, or not fully include, the

transmission time. Compared with a regular asynchronous block write with a 16 byte

payload, the time cost is 90% less, which is not surprising since the broadcast does not

require an acknowledgment packet and thus saves the time of waiting for a response.

In subsection 2.5.1, we presented the timing model of broadcast protocol in Equa-

tion 2.2: TI/O_bc = TQ + 5µs × Nboards + TR + TW . The items TQ, TR and TW are a

49

CHAPTER 2. SYSTEM ARCHITECTURE

50 100 150 200 250 300 350 400 450 500

Data size (quadlets)

20

30

40

50

60

70

80

90

100

R
e

a
d

 T
im

e
 (

u
s
)

IEEE 1394 Acynchronous Block Read Times

Bandwith = 350.8442Mbps

Latency = 27.0391us

50 100 150 200 250 300 350 400 450 500

Data size (quadlets)

20

30

40

50

60

70

80

90

100

W
ri
te

 T
im

e
 (

u
s
)

IEEE 1394 Acynchronous Block Write Times

Bandwith = 265.1186Mbps

Latency = 28.2187us

Figure 2.15: Asynchronous block read and write times (400 Mbps)

50

CHAPTER 2. SYSTEM ARCHITECTURE

Figure 2.16: Asynchronous Broadcast Block Write

broadcast write (query) transaction, an asynchronous block read transaction and an

asynchronous block write transaction, respectively. By substituting Equation (2.5),

(2.6) and broadcast write mean time into Equation (2.2), the timing model equation

can be rewritten as:

TI/O_bc = 2.51+5×N+(27.04+0.022802∗SZr∗N)+(28.22+0.030175∗SZw∗N) (2.7)

where N is the number of boards, SZr and SZw are the sizes, in bytes, of the status

packet and command packet for a single board, respectively. For the da Vinci Research

Kit, SZr and SZw are 68 bytes and 16 bytes, respectively. The final timing model is

a linear function:

TI/O_bc = 57.77µs + 7.0333µs × N (2.8)

51

CHAPTER 2. SYSTEM ARCHITECTURE

To verify the accuracy of this model, we experimentally collected timing data

on systems with 1 to 10 boards. Similar to previous experiments, a total of 10,000

timing data samples are collected for each setup and the mean timing values are

plotted in Figure 2.17. The timing data collected from the hardware is higher than

the model predicted data, with a mean difference of 20 µs. One of the reasons is that

we added 10 µs to the wait after the read request packet to ensure that all boards

have finished transmitting. Another possible source of the difference is measurement

error. The standard deviation of the timing data is relatively large, especially for

smaller numbers of boards.

1 2 3 4 5 6 7 8 9 10

Number of Boards

40

60

80

100

120

140

160

180

M
e

a
n

 C
y
c
le

 T
im

e
 (

u
s
)

Broadcast Protocol: Measured vs. Model Predicted Time

Measured

Model Predicted

Figure 2.17: Broadcast protocol mean cycle time on dVRK, predicted by model
(red) and measured (blue, with error bars showing standard deviation)

We also experimentally compared the proposed broadcast protocol to the prior

asynchronous protocol. As shown in Figure 2.18, the broadcast protocol shows a huge

52

CHAPTER 2. SYSTEM ARCHITECTURE

performance increase, especially for a system with many nodes. Using the broadcast

protocol, a da Vinci system with 8 boards (4 manipulator arms) could conceivably

run at 6 kHz.

1 2 3 4 5 6 7 8 9 10

Number of Boards

0

100

200

300

400

500

600

700

800

M
e
a
n
 C

y
c
le

 T
im

e
 (

u
s
)

Broadcast vs. Asynchronous Protocol

Broadcast Protocol

Asynchronous Sequential RW

Figure 2.18: Mean cycle time comparison between Broadcast and Asynchronous
protocols on dVRK

2.5.5 Discussion

Our analysis of the original control system timing performance revealed that the

latency due to PC operating system overhead was the primary cause of the I/O

performance bottleneck, which led us to a series of bus optimizations and a new com-

munication protocol. This new protocol reduces the number of PC-initiated transac-

tions to three by using broadcast packets and enabling all FPGA controller boards

53

CHAPTER 2. SYSTEM ARCHITECTURE

to broadcast and cache status packets. Performance-wise, the new design shows good

scalability and cuts the average I/O cycle time of a full dVRK system to under 200 µs.

One limitation of the current implementation of the protocol is that it is application-

specific. For example, the FireWire status packet size and the wait time per node

are fixed, but they can be parameterized so that the current protocol can be used

for other robotics systems. The general design of the protocol can be applied to any

fieldbus with broadcast and peer-to-peer communication capabilities. For other field-

buses, the idea to minimize the number of PC transactions and fieldbus optimizations

at the link layer can still be applied to achieve an efficient I/O timing performance.

2.6 Ethernet-to-FireWire Bridge for Real-

time Control

This section presents one contribution of this thesis, which is a bridge design to

enable real-time control over a conventional Ethernet interface, including a FPGA

based bridge board design and a packet forwarding mechanism, and timing perfor-

mance modeling and experimental evaluation. The general concept and design was

developed by Zihan Chen with help from Dr. Peter Kazanzides. It was prototyped

with help from visiting summer student Long Qian, from Tsinghua University, who

wrote the initial FPGA bridge firmware and assisted with performance testing.

54

CHAPTER 2. SYSTEM ARCHITECTURE

2.6.1 Introduction

Our choice of FireWire as the fieldbus for dVRK has proven to be successful.

With the proposed broadcast, we achieved multi-kilohertz control on a full dVRK.

However, FireWire today is less prevalent than in the past and even the real-time PC

driver stack, RT-Firewire [101], is no longer maintained. Thus, our solution suffers

from occasional timing outliers. Furthermore, while the new broadcast protocol can

achieve up to 6 kHz control rates, we have found that it does not work reliably with

some PC FireWire chipsets/drivers. Finally, FireWire interfaces are not as common

as Ethernet on modern computers and laptops, and use of libraw1394 primarily re-

stricts the system to Linux and its real-time variants. Although a Windows version

of libraw1394 has been reported [90], this would only be suitable for non-real-time

applications. More importantly, some dVRK sites have invested in other real-time

platforms, such as Matlab Simulink Real-Time (formerly called Matlab xPC), which

supports Ethernet and EtherCAT but not FireWire. Thus, while one could invest

in developing real-time FireWire drivers for the different platforms and require all

control computers to have FireWire interfaces, it is more practical to leverage the

existing hardware and software support for Ethernet as a real-time control fieldbus.

We considered two approaches to leverage Ethernet-based technology for our

multi-node distributed control system: (1) replace the FireWire interfaces on each

node with EtherCAT, or (2) introduce an Ethernet-to-FireWire bridge between the

PC and FireWire subnetwork. The first approach has the potential advantage that the

55

CHAPTER 2. SYSTEM ARCHITECTURE

cables are conventional unshielded twisted pair (UTP) and can be high-flex, longer,

and more easily routed inside robotic structures. Cabling is not an issue for the

dVRK, however, and this approach would require a substantial retrofit of existing

systems including modification of the FPGA board design to include two Ether-

net ports and change of firmware to include an EtherCAT Slave Controller IP core

from Beckhoff. More importantly, all existing FireWire-based FPGA boards would

no longer work with this approach and would need to be replaced. So we adopted

the second approach, which is illustrated in Figure 2.19. This section presents the

Ethernet-to-FireWire bridge design and the results of experiments, including those

with the actual dVRK hardware, to demonstrate that with the appropriate software,

it provides hard-real-time performance for multi-kiloherz centralized control of a large

number of distributed robot axes.

High-
level

control

Low-
level

control

Robot
Hardware

PC

Field-bus
Bridge

Embedded Embedded

I/O
...

I/O

Figure 2.19: Control system architecture with a fieldbus-bridge

It is important to notice that although the bridge is designed for dVRK and

realized as an Ethernet to FireWire bridge, the method itself can be generalized to

convert other buses to a real-time capable fieldbus, for example USB to FireWire.

56

CHAPTER 2. SYSTEM ARCHITECTURE

PC FPGA
QLA 1

FPGA
QLA 2

FPGA
QLA 4

FPGA
QLA 3

Ethernet
FireWire
Bridge

Ethernet FireWireI/O

Robot Manipulator 1 Robot Manipulator 2

Figure 2.20: Hardware architecture with prototype Ethernet to FireWire bridge

2.6.2 Ethernet-to-FireWire Bridge Design

Compared with a fully FireWire-based system (Figure 2.6), Figure 2.20 intro-

duces a new system design for dVRK with an embedded bridge between the PC and

FireWire-based control network. All communications between the PC and slave nodes

are done via the bridge node. While the bridge talks to the rest of control network

using the FireWire-based broadcast protocol, the connection between the PC and

bridge node is point-to-point, thereby eliminating the need for a complicated media

access control protocol.

This section describes the bridge design, frame transmission protocol and status

control process implemented on the firmware of the bridge node.

2.6.2.1 Prototype Bridge Board Design

The prototype bridge consists of our custom FPGA board, which contains a Xilinx

Spartan-6 XC6SLX45 FPGA and IEEE-1394a physical layer chip, coupled with an

off-the-shelf Ethernet PHY and MAC controller board (KSZ8851-16mll-EVAL). The

57

CHAPTER 2. SYSTEM ARCHITECTURE

Figure 2.21: Prototype Ethernet-to-FireWire Bridge

Ethernet chip manufactured by Micrel is a single-port controller chip with a non-PCI

Interface and is available in 8-bit and 16-bit bus designs. We utilized the 16-bit bus in

our design for better efficiency in Ethernet data I/O. We designed a custom connector

board to interface these two boards, as shown in Figure 2.21.

2.6.2.2 Frame Transmission Protocol

The main functionality of the bridge node is to convert an Ethernet packet from

the PC into a FireWire packet, perform the FireWire transaction, and convert the

FireWire response to an Ethernet packet for the PC. To simplify the development

of the bridge node FPGA firmware and to maximize system efficiency, the FireWire

58

CHAPTER 2. SYSTEM ARCHITECTURE

packet construction and parsing is implemented in the PC software.

Frames transmitted from the PC to the bridge node include quadlet read/write,

block read/write, the previously defined broadcast-based write/query, and system syn-

chronization, each with an appropriate Ethernet header and checksum. The frame

structure is presented in Figure 2.22. Quadlet read/write and block read/write are

defined in the IEEE-1394 standard, enabling basic read and write transactions of

variable length between two individual nodes within a FireWire network. As demon-

strated previously, the broadcast-based write/query accelerates the control system by

eliminating multiple requests to each separate node from the PC. The system syn-

chronization frame is used to inform the bridge of the number of active nodes, N ,

in the FireWire network. The PC controller is authorized to add or remove an ex-

isting board to or from the list of current active boards. After a broadcast query is

transmitted, the bridge will serve as a hub, collecting N responses before sending the

combined packet back to the PC.

FPGA
QLA

FPGA
QLA

FPGA
QLA

FPGA
QLA

Ethernet
Header

FireWire-format
Frame

Ethernet
Checksum

PC Bridge

FireWire-format
Frame

Figure 2.22: Ethernet Frame Structure

59

CHAPTER 2. SYSTEM ARCHITECTURE

Upon receiving an Ethernet packet, a parallel validation checking process based on

the frame format is activated. The validated frame is passed to the FireWire network

with the Ethernet header and checksum removed. If a system synchronization packet

is received, the local parameter N is updated; it is not necessary to relay that frame

to the FireWire subsystem.

In the reverse direction, quadlet/block read response, write acknowledge frame, and

broadcast query response are transmitted through the FireWire field-bus. The first

two frame types are defined in the IEEE-1394 standard as responses to quadlet/block

read/write requests. When quadlet/block read responses are received by the bridge

node, they are passed to the Ethernet network with a specific Ethernet header and

a correct checksum. The write acknowledge frame triggers the switch of state in the

bridge. The PC controller is not acknowledged because the overhead of transmitting

an Ethernet frame is comparatively high. The broadcast query response is initiated by

individual slave nodes in the distributed I/O subsystem, and provides the feedback

information for the PC to perform closed-loop control. The bridge gathers N feedback

frames and then transmits them in one Ethernet packet with a predefined Ethernet

header.

With this design, we successfully inherit the advantages of the FireWire-based

approach and at the same time benefit from the ubiquity of Ethernet hardware and

its well-maintained real-time driver stack for the PC. Robustness is also improved

because the FireWire broadcast protocol no longer involves the FireWire chipset on

60

CHAPTER 2. SYSTEM ARCHITECTURE

the PC, which was problematic on some systems.

2.6.2.3 Status Control

Featuring its parallel operation, hard real-time capability and plentiful I/O exten-

sions, the FPGA is more suitable than the PC to implement the finite state machine

of the control loop. Sequential state transitions are predefined in the firmware of the

bridge, along with the signals triggering state changes. Though the PC is responsible

for initiating read or write commands, its request does not act as an interrupt for

the bridge node. Instead, commands are buffered until the bridge reaches the status

of fetching a PC request. A timeout is set in order to avoid unnecessary waiting

caused by errors. When the timeout requirement is met, the bridge switches back to

the Broadcast Read Request from PC state, where it constantly polls for the trigger

representing the arrival of a request initiated by the PC controller. In a complete

control cycle, the finite state machine (FSM) is implemented as illustrated in Figure

2.23. Five triggers are utilized to initiate state transitions in the FSM architecture.

2.6.2.4 Ethernet Software

The software of the bridge-based da Vinci Research Kit is arranged into several

functional layers which remain unmodified compared to the FireWire-based dVRK:

hardware interface, PID-based low-level control, high-level customized control, tele-

operation and application layer [48].

61

CHAPTER 2. SYSTEM ARCHITECTURE

Broadcast Read
Request from PC

Transmit Broadcast
Read Request to

FireWire

Receive Broadcast
ACK from node 0

Receive Broadcast
Response (N times)

Transmit Total Data
Back to PC

TRIG: FW_ACK_RX

TRIG: FW_TXTRIG: FW_RX

TRIG: ETH_RXTRIG: ETH_TX

Figure 2.23: Finite State Machine for control loop, with num_node FireWire nodes.

The introduction of the Ethernet-to-FireWire bridge requires an Ethernet interface

instead of FireWire in the hardware interface level; this Ethernet interface is provided

by the C++ library pcap. An Eth1394Port is created to represent the node in the

bridge-based design. An abstract base class BasePort is introduced so that both

Eth1394Port and FirewirePort can inherit from it and provide the same functionality.

Class AmpIO, which represents an FPGA/QLA node, is unchanged, thereby keeping

the upper software layers intact.

The Ethernet interface library pcap is directly available for Linux and OS X. For

Windows, a slightly modified library, winpcap, is utilized, which provides the same

methods for Ethernet port operation. Portability between different operating systems

62

CHAPTER 2. SYSTEM ARCHITECTURE

Application

Teleoperation

High-level Control (Customized)

Low-level Control (PID)

Hardware Interface
FireWire Port Ethernet Port

BasePort
pcaplibraw1394

Figure 2.24: Software Architecture

is guaranteed by the cross-platform support of the pcap library, which is a significant

improvement compared to the FireWire-based dVRK, which required the libraw1394

library that is only readily available on Linux. To achieve best performance of the

system, a real-time environment composed of a real-time operating system and real-

time Ethernet driver is required. Our software can be quickly ported to such platforms

with the ubiquitous support for the pcap library; for example, Xenomai with the RTnet

driver or Matlab Simulink Real-Time.

2.6.3 Experiments

System performance experiments are conducted in the following three aspects.

First, we measure the round-trip time of the standard FireWire protocol quadlet

63

CHAPTER 2. SYSTEM ARCHITECTURE

read, using a real-time operating system and real-time Ethernet driver. Timing char-

acteristics of the bridge-based data transmission are compared with the FireWire-only

transmission. Following that, control loop performance of both systems is tested and

discussed. Furthermore, the cross-platform support for an Ethernet-based design is

demonstrated.

2.6.3.1 FireWire Transaction over Ethernet

As presented in the System Overview, the previous FireWire-based design achieves

a good average timing performance, however, the system reliability suffers from lack

of support for a real-time PC FireWire driver. The introduction of the Ethernet-

to-FireWire bridge aims to improve the system performance by taking advantage

of the prevalent real-time Ethernet driver. First, the round-trip time of the basic

quadlet read transaction for both system configurations is measured by averaging

over 5000 transactions, as shown in Figure 2.25. An Ethernet sniffer (tcpdump)

based on the pcap library is used to capture the timestamp of Ethernet frames. A

round-trip of a quadlet read transaction includes an Ethernet quadlet read request

initiated by the PC controller and a corresponding response transmitted from the slave

node. For both designs, the testing environment is set up on a real-time operating

system (Xenomai 2.6.3 real-time framework based on Linux). The bridge design

uses a real-time Ethernet driver (RTnet 0.9.12), while the FireWire-based design

uses the standard (non-real-time) FireWire driver. Instructions for setting up the

64

CHAPTER 2. SYSTEM ARCHITECTURE

Figure 2.25: Quadlet read transaction times, tested on Xenomai real-time operating
system. FireWire uses standard (non-real-time) FireWire driver, whereas Ethernet/-
FireWire uses RTnet real-time driver.

65

CHAPTER 2. SYSTEM ARCHITECTURE

Xenomai/RTnet system are provided in Appendix A.

The average execution times for the FireWire-only and Ethernet-to-FireWire Bridge

designs are 28.79 µs and 35.31 µs, respectively. The average time for the bridge-based

design is longer due to the two additional Ethernet transmissions. But, the maximum

time for the quadlet read transaction is significantly reduced from 238.78 µs for the

FireWire-based design to 50 µs for the bridge-based design. This is primarily due to

the use of the real-time Ethernet driver.

2.6.3.2 System Performance

We measured the control loop performance of the bridge-based design and com-

pared it with the FireWire-only design, as shown in Figure 2.26. The system perfor-

mance includes the I/O time of Ethernet and FireWire in an 8-node system, which is

typical for the control of the dVRK. Broadcast transfers are employed in both systems

to maximize control efficiency. The test environment is the same as for the quadlet

read, except that the FireWire-only design is tested with the generic Linux kernel

rather than with Xenomai. In our experience, Xenomai and Linux-generic produce

similar I/O times, since the primary cause of timing variations appears to be the

non-real-time FireWire driver used in both cases.

The Ethernet I/O costs about 47.76 µs in the system loop, which is higher than

the Ethernet I/O time for a quadlet read transaction due to the larger payload. As

expected, the bridge-based design has more consistent timing measurements than

66

CHAPTER 2. SYSTEM ARCHITECTURE

Figure 2.26: I/O Time of FireWire and Ethernet/FireWire bridge in an 8 FPGA-
QLA board system (standard dVRK setup); FireWire tested on generic Linux,
whereas Ethernet/FireWire tested on Xenomai with RTnet driver.

67

CHAPTER 2. SYSTEM ARCHITECTURE

the FireWire-only design. The standard deviation of the bridge-based design is 1.47

µs, and the maximum time cost is 175.00 µs, which is less than one-third of the

FireWire-only design. With PC computation time added, the complete control loop

for the bridge-based design is less than 200 µs, which is sufficient for 5 kHz control.

Though the control frequency of the FireWire-based design is higher on average, the

performance is not as deterministic due to the lack of a real-time FireWire driver.

The introduction of the Ethernet-to-FireWire bridge separates the FireWire sub-

sytem, which can then be implemented entirely on the FPGA. This makes it easier

to support our custom broadcast protocol and avoid problems that we faced with

some PC FireWire chipsets and drivers. On the PC, this design benefits from the

availability of a real-time Ethernet driver.

2.6.3.3 Cross-platform Capability

The prevalence of Ethernet ports and software support (e.g., pcap library [13])

renders the bridge-based design as a cross-platform solution. This test measures the

timing performance of quadlet read and broadcast read for an 8-node system using dif-

ferent operating systems, as shown in Figure 2.27. Xenomai is a real-time framework

for Linux; real-time drivers such as RTnet are supported on the Xenomai platform.

System performance is less satisfactory on non-real-time platforms such as Linux

Generic and Apple OS X. For the Windows operating system, an echo test reveals

that it takes approximately 2.34 ms for two Windows controllers to communicate

68

CHAPTER 2. SYSTEM ARCHITECTURE

Xenomai Linux OS X

Quadlet Read (µs)
Avg 35.3088 260.8400 306.7500
Max 50.0 744.0 414.0
Std 1.3337 16.0609 30.7173

Broadcast Read (µs)
Avg 73.5246 262.7728 559.6167
Max 84.0 660.0 636.0
Std 1.5074 14.2807 36.5718

Figure 2.27: Ethernet quadlet read/broadcast read timing data on Xenomai, Linux
and OS X

through the raw Ethernet protocol. These tests verified the cross-platform capability

of our design, but also demonstrated the importance of a real-time platform for a con-

trol system. Thus, cross-platform capability is more important for different real-time

operating systems, such as Xenomai, Matlab Simulink Real-Time, and QNX.

2.6.3.4 Ethernet Bridge Timing Model

We model the round-trip cycle time for the bridge-based design as:

Tbridge = Tsw + Tb + N
8 (Sw + Sr)

BWe

+ N
8Sw

BWf

+ NTsf (2.9)

where BWf is the FireWire bandwidth (400 Mbps for IEEE-1394a), Tb is the bridge

delay, Tsf is the time required for each slave to broadcast its data to the bridge

node (5 µs), and Sw and Sr are the sizes (in bytes) of the write and read packets,

respectively. We assume that the bridge delay is constant because it can immediately

begin processing an incoming (Ethernet or FireWire) packet and start transmitting

the outgoing (FireWire or Ethernet) packet. Furthermore, because it is implemented

69

CHAPTER 2. SYSTEM ARCHITECTURE

in an FPGA and uses a 25 MHz 16-bit parallel interface to the Ethernet MAC, we

assume that Tb is negligible.

For the da Vinci Research Kit, the packet sizes (not including headers, checksums,

etc.) are Sr = 68 bytes and Sw = 16 bytes. In anticipation of an expected change

to the dVRK system write packet to include the control register (quadlet), Sw = 20

bytes is used instead of Sw = 16 bytes in the following analysis and experiments.

Using these values, and the other values presented above, produces the following

linear equation:

Tbridge = Tsw + 12.44N (µs) (2.10)

We measured the round-trip time for the Ethernet/FireWire bridge for setups

with 4, 5, 6, 7, and 8 nodes. Performing a linear regression yielded a slope of 16.08

µs/node and an intercept of 35.12 µs. Thus, we estimate Tsw = 35.12µs. We note

that the measured slope (16.08) is larger than the computed slope (12.44), which

indicates that our model may be missing some sources of delay or that some of our

parameter estimates may be inaccurate.

2.6.4 Discussion

We developed an Ethernet-to-FireWire bridge that enables real-time control of

a distributed system from a central PC. Real-time control is possible because the

70

CHAPTER 2. SYSTEM ARCHITECTURE

number of Ethernet transactions can be limited to two or three (depending on the

protocol), regardless of the number of distributed nodes. In this manner, our system

offers benefits similar to EtherCAT but utilizes only commodity network protocols

(Ethernet and FireWire) and thus our complete hardware/software design is available

open source.

The addition of the Ethernet-to-FireWire bridge node and associated real-time

driver improves I/O performance, significantly reducing the maximum I/O time at

the cost of a slight increase in the average I/O time (48 µs for the dVRK System).

From a systematic level, the bridge acts as a buffer or switch between two fieldbuses,

Ethernet and FireWire. FireWire is designed as a real-time control fieldbus, however,

real-time performance is only guaranteed within the embedded subsystem. Ethernet

is not intrinsically designed as a real-time transmission media, but has a wide range of

real-time support benefitting from its ubiquitous applications. The bridge approach

leverages the strengths of two different transmission media (Ethernet and FireWire),

while compensating for the drawbacks of each to achieve high bandwidth hard-real-

time control performance. Although demonstrated on the da Vinci Research Kit, this

approach is generally applicable to other systems.

The success of this bridge design has led us to adopt an upgraded design of the

FPGA board with an additional integrated Ethernet port, as shown in Figure 2.28.

With this upgrade, any FPGA board can serve as a bridge node. When a frame

from the control computer arrives, the FPGA parses the FireWire packet inside the

71

CHAPTER 2. SYSTEM ARCHITECTURE

Ethernet frame and responds to the packet directly if itself is targeted (i.e., the

bridge’s node ID matches the FireWire packet’s destination node ID). Otherwise, it

forwards the packet to the FireWire network, waits for responses and forwards any

response packet from other FireWire nodes. This approach eliminates the need for

a separate bridge board, and the board remains backward compatible. There is an

ongoing effort to upgrade the existing FPGA firmware to support this bridge feature.

Ethernet Port

Figure 2.28: Second generation IEEE-1394 FPGA board with an integrated Ether-
net port

72

CHAPTER 2. SYSTEM ARCHITECTURE

2.7 Performance Comparison with Ether-

CAT

We selected FireWire in 2006 and developed a broadcast protocol to further im-

prove its performance, but the obvious question is whether this is still a good choice,

given the wider deployment of other Ethernet based fieldbus systems, particularly

EtherCAT [73, 51]. As in the robotics field, several groups have reported using Ether-

CAT as their fieldbus of choice [96, 40]. In this section, a performance comparison

study is presented.

2.7.1 Introduction to EtherCAT

In 2003, the EtherCAT protocol was initially introduced by Beckhoff Automation

GmbH at the Hannover Fair and the standard has now been opened up and handed off

to the EtherCAT Technology Group (ETG). Among all industrial real-time Ethernet

systems, EtherCAT delivers the most deterministic response (100 axes in 125 µs) and

has reached the tipping point for market acceptance [51].

Similar to the FireWire broadcast protocol, EtherCAT is a link layer level protocol.

As shown in Figure 2.29, with EtherCAT, several slave nodes are typically networked

with a single bus master node in a ring topology. During each cycle, the EtherCAT

frame initiated by the master is passed through the next slave node, which extracts

relevant output data and stuffs its own input data into the packet at a predefined

73

CHAPTER 2. SYSTEM ARCHITECTURE

location “on-the-fly”, until it reaches the end of the chain and is sent back to the

master. These cyclic frames are referred to as Process Data in EtherCAT terminology.

EtherCAT also supports a mailbox-based protocol for acyclic data exchange (Service

Data).

Slave N
PC

Slave 1

DPRAM

Slave 2

DPRAM DPRAM
...

Figure 2.29: An example EtherCAT system

At the physical layer, EtherCAT relies on standard Ethernet and transmits frames

with the standard Ethernet telegram structure at 100 Mbps, but with an entirely dif-

ferent mode of operation. At each cycle, control packets are not sent to each slave

node separately as in other approaches, but rather utilize a single telegram with the

headers and process data of all stations defined in consecutive sub-telegrams. The

benefits of the approach are two-fold: 1) it minimizes the number of transactions on

the master node, which typically is a conventional computing platform and therefore

subject to software-induced latency, and 2) it increases the user data rate as the Eth-

ernet protocol requires a minimum of 64 bytes payload size and typical control packets

are small (below 15% in motion control applications [51]). If a Process Data packet

exceeds the maximum Ethernet payload, it is distributed across multiple EtherCAT

frames.

74

CHAPTER 2. SYSTEM ARCHITECTURE

This special mode of operation requires a special hardware implementation on

slave nodes. In normal operation, an Ethernet slave typically has only one Ether-

net port, and receives and transmits data packets through the same port (typically

half-duplex). An EtherCAT slave, on the other hand, generally uses two separate

ports, one for receiving and one for forwarding. A special EtherCAT Slave Controller

implements the receive, process “on-the-fly” and forward link layer protocol. It is

typically realized as an Application-Specific Integrated Circuit (ASIC) or as a FPGA

core module for the best timing performance. On the master side, EtherCAT can

utilize any off-the-shelf Ethernet card and it is typically implemented as a software

stack that configures and manages its communication. For example, the TwinCAT

3 from Beckhoff Gmbh is developed as an extension of Microsoft Visual Studio and

runs on a Windows computer.

2.7.2 EtherCAT Timing Performance

As the first step of this comparison, we model, measure and verify the EtherCAT

timing performance. Although several documents have reported EtherCAT timing

performance [73, 51, 69], they either neglected the practical software induced la-

tency [51], or used a non-ideal platform (JAVA). Prytz’s analysis between EtherCAT

and PROFINET IRT stayed at the theoretical level (models), without measurements

from hardware [69]. In our test setup, a Xenomai (2.6.3) patched Linux (Kernel

version 3.5.7) computer with the RTnet [52] real-time Ethernet driver is used as the

75

CHAPTER 2. SYSTEM ARCHITECTURE

AM3359 Industrial Communications Engine

OutIn In

Connected
to PC Connected

Figure 2.30: EtherCAT slave test board: AM3359 Industrial Communications En-
gine (TMDSICE3359) from Texas Instruments (TI). The control PC is connected to
the left board’s In port and the two boards are daisy-chained.

master control computer and the AM3359 Industrial Communications Engine (TMD-

SICE3359) from Texas Instruments (TI) Incorporated (see Figure 2.30) is selected as

the EtherCAT slave device. For the master software stack, we used Simple Open

EtherCAT Master (SOEM) from the Open EtherCAT Society due to its openness

and support for Linux. The SOEM master stack has been ported to support the

Xenomai real-time kernel.

2.7.2.1 EtherCAT Timing Model

Prytz [69] presented a model for the round-trip time on EtherCAT. This model

assumes a master forwarding time based on the packet size and Ethernet bandwidth

76

CHAPTER 2. SYSTEM ARCHITECTURE

(e.g., 100 Mbps), a maximum delay of the master PHY (expected to be less than 0.5

µs), and a 1 µs forwarding time per slave node (this includes cable and slave PHY

delays). The model does not, however, consider software overhead. We add a constant

term, Tsw, to model software overhead. Essentially, we assume that the software

overhead due to the increase in packet size (as the number of nodes is increased) is

negligible compared to the total software overhead. This is a reasonable assumption

because the amount of time required to copy packet data from one memory location

to another is small compared to other tasks done by the operating system and driver,

such as context switches. Thus, we can simply model the round-trip EtherCAT timing

as:

Tecat = Tsw + N × 8 (SZout + SZin)
BWe

+ N × Tslave, (2.11)

where N is the number of slave nodes, SZout is the number of bytes written from

the PC to each slave, SZin is the number of bytes sent by each slave to the PC,

BWe is the Ethernet bandwidth in Mbps (100), and Tslave is the forwarding time of

each EtherCAT slave node. This equation assumes the use of a single packet, which

is reasonable given the number of bytes required in our application. It also does

not include the overhead for the standard Ethernet header and CRC, which are the

same for all Ethernet-based protocols and captured in Tsw, or the overhead for the

EtherCAT header, which is assumed to be negligible.

77

CHAPTER 2. SYSTEM ARCHITECTURE

2.7.2.2 Model Parameter Measurement

As shown in the previous section, three parameters are of interest, namely, soft-

ware latency (Tsw), EtherCAT node latency (Tslave) and transmission speed (BWe).

Experimentally, we measured and identified these three parameters.

Bandwidth (BWe) and Software Latency (Tsw): From FireWire testing, we

learned that fieldbus medium transmission can be lower than nominal speed. One

reason is that some details, such as the time required to transmit the frame header

and CRC, is not included in the model. To identify EtherCAT transmission speed

(nominally 100 Mbps) and software latency, we used a setup with a single EtherCAT

slave board, loaded slave firmwares with different payload sizes (8/10/12/14/16/18/20

quadlets) and measured the cycle time for each payload size. The timing measurement

program runs 100,000 cycles and outputs the mean cycle time. As shown in Figure

2.31, EtherCAT transmits data at 93.10 Mbps (BWe = 93.10 Mbps), slightly under

the nominal 100 Mbps, and has a software latency of 26.79 µs (Tsw = 26.79 µs).

EtherCAT Slave Forwarding Latency Tslave: TI’s EtherCAT Slave Controller

solution is based on its Programmable Realtime Unit (PRU) co-processors and has

a reported end-to-end forwarding latency of less than 700 ns [35]. To measure it

experimentally, we measured the cycle time on setups with 1 to 4 boards while keeping

the overall EtherCAT packet size unchanged. For example, in a one slave board setup,

the slave firmware has a payload size of 20 quadlets and in a two board setup, one

of them has a payload of 18 quadlets and the other one has 2 quadlets. This avoids

78

CHAPTER 2. SYSTEM ARCHITECTURE

6 8 10 12 14 16 18 20 22

Data size (quadlets)

29

29.5

30

30.5

31

31.5

32

32.5

33

33.5

34

C
y
c
le

 T
im

e
 (

u
s
)

EtherCAT Cycle Time vs. Data Size

Data Points

Fitted Line

Bandwith = 93.1006Mbps

Latency = 26.7851us

Figure 2.31: EtherCAT timing performance: data size (quadlets) versus cycle time
(µs)

79

CHAPTER 2. SYSTEM ARCHITECTURE

1 2 3 4

Number of Slaves

33

33.5

34

34.5

35

35.5

36

36.5

37

37.5

38

C
y
c
le

 T
im

e
 (

u
s
)

EtherCAT Cycle Time vs. Number of Slaves

Data Points

Fitted Line

Node Latency = 1.096 us/node

Figure 2.32: EtherCAT slave forwarding latency: number of nodes versus cycle time
(µs)

timing differences that could otherwise be introduced by different Ethernet frame

sizes. Figure 2.32 plots cycle time versus number of boards. By fitting a line, we

found that the forwarding delay of each node is 1.10 µs (Tslave = 1.10 µs), which is

consistent with the 1 µs value reported by Prytz [69] and slightly higher than the

claimed 700 ns delay. The difference may come from Ethernet cable latency as well

as limited data samples.

2.7.2.3 EtherCAT Model Verification

The EtherCAT model uses the same dVRK packet sizes as the Ethernet Bridge

presented in Section 2.6.3.4, which are SZout = 20 bytes and SZin = 68 bytes. Using

80

CHAPTER 2. SYSTEM ARCHITECTURE

1 2 3 4

Number of Slaves

20

25

30

35

40

45

50

55

60

65

C
y
c
le

 T
im

e
 (

u
s
)

EtherCAT dVRK Cycle Time vs. Number of Slaves

Data Points

Model Prediction Time

Figure 2.33: EtherCAT performance: cycle time (µs) versus number of nodes

these values, and the measured Tsw, BWe and Tslave values, Equation (2.11) can be

rewritten as:

Tecat = 26.79µs + N × 8.662µs (2.12)

This equation is the model of EtherCAT timing data for da Vinci Research Kit. For

verification, we loaded firmware with the same payload size into TI’s TMDSICE3359

boards and measured the cycle time on 1 to 4 boards, as shown in Figure 2.33. The

blue star represents the cycle time collected on the real hardware and the red circle

is the predicted cycle time using Equation (2.12). The model matches the measured

data well, with a slightly higher prediction, which, we suspect, is from measurement

errors due to the small number of boards.

81

CHAPTER 2. SYSTEM ARCHITECTURE

2.7.3 Time Performance Comparison on dVRK

We compare timing data collected with hardware, as well as predicted data using

models. To obtain a fair comparison, we assume that all implementations use a sin-

gle node to control four robot axes. Figure 2.34 plots data collected from hardware

and Figure 2.35 uses predicted data from the models developed in earlier sections.

All three protocols can support systems with large numbers of nodes and show good

scalability. The Ethernet/FireWire bridge design has a higher slope (i.e., the time

increase when an additional board is added), due to the extra forwarding step in-

volved. The FireWire broadcast protocol has a higher overhead, but can scale better

compared with EtherCAT thanks to the higher transmission speed (400 Mbps vs.

100 Mbps). For large systems, the FireWire broadcast protocol can outperform the

EtherCAT protocol.

2.7.4 Discussion

The study showed that the proposed FireWire protocol and Ethernet/FireWire

bridge provide performance comparable to EtherCAT. All three can provide sufficient

performance for high-rate control. FireWire has a higher bus bandwith (400 Mbps for

IEEE-1394a and typically 800 Mbps for IEEE-1394b) compared to EtherCAT, which

is limited to 100 Mbps, but this is not likely to be significant.

There are several obvious benefits to using EtherCAT: (1) while many computers

82

CHAPTER 2. SYSTEM ARCHITECTURE

0 1 2 3 4 5 6 7 8 9 10 11

Number of Slaves

0

50

100

150

200

250

300

C
y
c
le

 T
im

e
 (

u
s
)

Timing Performance Comparison

FireWire Broadcast

Ethernet/FireWire Bridge

EtherCAT

Figure 2.34: Comparison of EtherCAT, FireWire Broadcast and Ethernet/FireWire
Bridge performance using data measured on physical hardware.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Slaves

0

50

100

150

200

250

300

C
y
c
le

 T
im

e
 (

u
s
)

Timing Performance Comparison (Models)

FireWire Broadcast

Ethernet/FireWire Bridge

EtherCAT

Figure 2.35: Comparison of EtherCAT, FireWire Broadcast and FireWire Bridge
performance based on models

83

CHAPTER 2. SYSTEM ARCHITECTURE

have a FireWire port, it is not as ubiquitous as an Ethernet port; (2) EtherCAT uses

standard Ethernet cables, which are more easily routed inside a robot mechanism

(with an option for high-flex cables) and can be longer than FireWire cables; and (3)

there are more vendors providing control components with EtherCAT interfaces. The

first benefit is also provided by the Ethernet/FireWire bridge configuration.

At this point, we can identify a few advantages of our FireWire and Ethernet/-

Firewire systems: (1) they are easier to dynamically reconfigure by connecting and

disconnecting nodes, as compared to the configuration tools and files required for

EtherCAT systems; and (2) they are completely open source and therefore simple

and inexpensive for researchers to implement custom slave nodes or to customize the

protocol. As an example, since we use broadcast to transmit status data from the

FPGA, all FPGA nodes can receive these packets and have information about the

whole robot system. Besides allowing any FPGA node to act as the Hub, this is po-

tentially valuable in a multivariable control system. Another use of this information

is to provide an extra safety feature (e.g., power shutdown if another FPGA node

fails).

From the control perspective, there is an important difference between the pro-

tocols. As shown in Figure 2.36, at the beginning of a control cycle, an EtherCAT

based controller first processes existing data in the In buffer, which is received from

previous cycle, then does control computation, then initiates an EtherCAT transmis-

sion. This transmission sends out control commands and fetches feedback. However,

84

CHAPTER 2. SYSTEM ARCHITECTURE

R C W S

P C E (R+W) S

N‐1

FireWire

In Buffer N

In Buffer

EtherCAT

N Used in cycle N+1

R Read C Compute W Write

S Sleep E EtherCAT cycle, includes Read and Write

Cycle N+1Cycle N+1

R

N‐1

P

N+1

Figure 2.36: Comparison of read buffer timing between FireWire broadcast and
EtherCAT protocol

the feedback is stored in the buffer and is used in the next control cycle. This means

that the control computation is always using an older feedback data. This can be

problematic, especially at a slower update rate. The FireWire broadcast protocol, on

the other hand, fetches and uses the latest input data for control computation and

transmits control output commands immediately. In fact, we can use the broadcast

write command packet as a read query packet as well and get an even better timing

performance.

2.8 Conclusions

In summary, this chapter presents the system aspect of a scalable, high-performance

control architecture motivated by the dVRK. In historical context, we reviewed the

85

CHAPTER 2. SYSTEM ARCHITECTURE

rationale for the selection of the distributed I/O and centralized computation archi-

tecture and revealed that the major limitation when scaling to large systems is the

number of transactions from the control computer. This led to the development of

the first contribution: a broadcast-based communication protocol for scalable real-

time performance. This protocol utilized the broadcast and peer-to-peer capabilities

of the FireWire bus. In a control cycle, the PC broadcasts a read query packet

containing a sequence number and a board exist mask to all control nodes (FPGA

boards). Upon receiving the query packet, each node transmits its status using an

asynchronous broadcast block write packet at its pre-allocated time slot. All status

broadcast packets are received and cached by each FPGA node, so that all nodes

maintain a copy of the entire robot status. Then, the control PC reads the status of

all nodes from any FPGA board. This protocol is similar to the FireWire isochronous

transfer mode, except that it can have an arbitrarily specified frequency. After the

PC computes the control commands, it transmits a broadcast packet that is received

by all nodes. Compared with protocols such as Ethernet POWERLINK, this protocol

reduces the number of transactions from the control PC to two for reading feedback

and one for writing commands. Also, the optimization on the FPGA minimizes tim-

ing gaps between FireWire frames and makes the use of concatenated asynchronous

transactions possible. In general, this protocol can be applied to any fieldbus with

broadcast and peer-to-peer transfer capabilities. For other fieldbuses, reducing the

number of transactions and optimizing the link layer at the hardware level can be

86

CHAPTER 2. SYSTEM ARCHITECTURE

applied as general strategies to design an efficient I/O protocol. This contribution

has been published in [19]. Credit: Zihan Chen.

In Section 2.6, a bridge design is proposed to enable real-time control over a

conventional Ethernet interface, which is a more common interface on modern com-

puters and has up-to-date Linux real-time driver support. When compared to the

state-of-the-art EtherCAT fieldbus, our approach shows comparable performance. In

this work, we demonstrated a strategy to support hard real-time control using a com-

mon interface (Ethernet) on an existing control network design. This strategy can be

applied to support other existing hardware using other fieldbusses. This work also

contributed an open-source implementation that converts an Ethernet interface to a

Firewire network. Although this implementation is by no means complete and does

not support FireWire isochronous transfers, it serves as an example and a starting

point. To our knowledge, no such converter is available open-source or commercially.

This bridge design was published in [70]. Credits: Developed in a collaboration with

Long Qian. The general concept and design was developed by Zihan Chen. Long Qian

implemented the initial bridge FPGA board firmware and helped with experiments.

The two contributions solved the identified performance problem and provided a

solution for high-performance scalable control of high DOF robot systems. However,

it is desirable to re-evaluate the use of FireWire compared to other fieldbus options,

especially EtherCAT. We presented a study comparing the timing performance of

the broadcast protocol, the bridge design and EtherCAT. The study was done both

87

CHAPTER 2. SYSTEM ARCHITECTURE

analytically and experimentally. The result shows that the FireWire broadcast proto-

col, with or without the Ethernet/FireWire bridge, has comparable performance. In

addition, the timing analysis of EtherCAT is a contribution of this work, as previous

studies were either performed using a non-optimal platform [73] or purely analytically

[69]. Credits: Zihan Chen.

88

Chapter 3

Software Architecture

This chapter presents a software architecture that supports high-performance,

low-level control as well as flexible, high-level ROS-based multi-process control. The

architecture is specifically used for the da Vinci Research Kit (dVRK), but could be

more generally applied to other robot systems.

3.1 Introduction

We laid out key requirements that influenced our choice of a centralized process-

ing and distributed I/O architecture, and presented a broadcast-based protocol that

enables IEEE-1394 (FireWire) to serve as a high-speed fieldbus that scales to a multi-

robot system, such as dVRK. We also presented the concept of a bridge design, that

couples a convenient interface, such as Ethernet or USB, with a high-speed real-time

89

CHAPTER 3. SOFTWARE ARCHITECTURE

fieldbus, such as IEEE-1394. This design ensures that at the hardware level, the ar-

chitecture can scale to support multiple high DOF robots and allows robot systems to

be reconfigured by changing the network cabling and safety/E-stop chain. A proper

design of the software architecture is required to support this hardware architecture’s

high performance, scalability and reconfigurability. Meanwhile, the software archi-

tecture, as a programming interface, should provide a clean low-level interface as well

as a flexible high-level interface.

A few software design considerations are as follows:

1. Real-time performance for high-frequency, low-level robot control.

2. Software support of the hardware scalability.

3. Easy reconfiguration, such as adding or removing arms or even splitting the

system into multiple independent setups, preferably without the requirement of

recompiling code.

4. Use of a familiar software development environment, such as Linux with the

GNU Compiler Collection (GCC), for all levels.

5. Ability to integrate with other high-level robot components and development

environments, such as MATLAB and Python, via middleware.

These considerations led to the use of C++ as the programming language and

Linux as the operating system (ideally Xenomai [29] patched for real-time perfor-

mance), though most of the software is portable to other platforms, such as VxWorks

90

CHAPTER 3. SOFTWARE ARCHITECTURE

and QNX. The key layers of the software architecture, shown in Figure 3.1, derive

from the following design decisions, which are presented in subsequent sections:

Control Computer

External Computer (Optional)

Non real time

Hard or soft
real time

Fieldbus

Hardware

Low Level Control

Mid Level Control

FeedbackCommands

Port

Sensor FeedbackControl Commands

Distributed Application Code

Distributed Application Code (Optional)

Network (e.g. ROS)

Hardware Interface

Motors
Sensors
(e.g. Encoder,

Current)

Current

Controller Board

Port

Data

Port

Motors
Sensors
(e.g. Encoder,

Current)

Current

Controller Board

Port

Data

Port

Motors
Sensors
(e.g. Encoder,

Current)

Current

Controller Board

Port

Data

Port

Figure 3.1: da Vinci Research Kit (dVRK) software control architecture

1. An efficient (low overhead) software interface to the fieldbus, which satisfies the

requirements for scalability and reconfigurability. This is discussed in Section

3.4.

91

CHAPTER 3. SOFTWARE ARCHITECTURE

2. A real-time, component-based framework that enables high bandwidth, low

latency control. Section 3.5 describes the design of the real-time software layer

for the dVRK, which is based on the open source cisst libraries developed at

JHU [23, 41].

3. Bridge or proxy components that provide interfaces between the real-time component-

based framework and other systems. Initially, this was provided by a custom

middleware [42] based on cisst and Internet Communications Engine (ICE), but

has since transitioned to ROS [71], as discussed in Subsection 3.6.

3.2 Thesis Contributions

The da Vinci Research Kit software has been developed by several individuals

and utilizes software infrastructure, such as the cisst libraries and Surgical Assistant

Workstation (SAW), that have been developed over more than a decade. My con-

tributions include: (1) design of the architecture, with Dr. Peter Kazanzides; (2)

implementation of the initial hardware interface layer, which was subsequently up-

dated by Anton Deguet, Jonathan Bohren, and others; (3) timing studies to compare

communication performance of ROS and cisst, which justify the use of the cisst Ex-

ecIn/ExecOut interfaces for low-latency data exchange between the low-level control

and hardware interface layers; and (4) implementation of the ROS interfaces, with

assistance from Jonathan Bohren and Anton Deguet.

92

CHAPTER 3. SOFTWARE ARCHITECTURE

The research contribution is in the architecture, which demonstrates a design for

scalable real-time control of multiple robots. While some aspects of the architecture

are conventional, such as the use of hierarchical multi-rate control, the novelty is the

way that it presents each robot as an independent entity, even though they share

resources such as a single communication bus and single thread for low-level control.

The work presented in this chapter was published in [18].

3.3 Related Work

There has been an increasing need for open robot platforms for research. We

consider a platform to be “open” if it gives researchers direct access to all sensors and

actuators and allows them to freely write/modify all levels of the control software.

This section reviews the control architectures of three widely available open robot

platforms.

The WAM [78] (Barrett Technology, Inc. Cambridge, MA) is a 7 degrees of

freedom (DOF) cable-driven robot with an optional three-finger Barrett hand. It

supports torque control of the robot and thus is an ideal platform for implementation

of advanced control algorithms. The robot arm has a distributed motor controller

module, called a Puck, installed on each joint. These modules are interconnected

through a CAN bus at 1 Mbps. Robot control can either be done with the internal

Linux control computer with Xenomai patched real-time kernel or with an external

93

CHAPTER 3. SOFTWARE ARCHITECTURE

computer through the exposed CAN bus port. The manufacturer also released an

open-source C++ library, libbarrett, which contains CAN bus communication and

kinematics routines. Recently, Bohren et al. [9] and Lages et al. [55] implemented

control architectures that use ROS for the high level interface and the Open Robot

Control Software (OROCOS) [11] for low-level control.

Another important open robot platform is the Personal Robot 2 (PR2, from Wil-

low Garage, Palo Alto, California). The robot features an omni-directional wheeled

base, two torque controlled 7-DOF arms with 1 DOF gripper, an actuated head and

other sensors (e.g. laser sensor, stereo camera). PR2 motion control comprises Motor

Controller Boards (MCB) interfacing motors and encoders, EtherCAT field bus, hard

real-time control software and a non-real-time ROS-compatible software stack. The

MCB closes a current PI-control loop at 100 kHz on a FPGA-based design. The

main motor control PC runs a PREEMPT_RT patched Linux kernel for real-time

performance [96]. A real-time process handles EtherCAT communication, servo-level

control and publishes robot states via a real-time safe ROS publisher. To add flex-

ibility and extensibility, a controller manager is implemented to dynamically load

real-time compatible controller plugins. Overall, the design provides a real-time safe

solution compatible with ROS, as well as extra flexibility through the use of plugins.

However, the real-time code is robot specific and cannot easily be reused.

In the medical robotics field, the Raven II Surgical Robotics Research platform

[32] is an open architecture, patient-side robot for laparoscopic surgery that consists

94

CHAPTER 3. SOFTWARE ARCHITECTURE

of two cable-driven 7 DOF arms. It was a collaborative effort between the Univer-

sity of Washington (UW) Biorobotics Lab and the University of California Santa

Cruz (UCSC) Bionics lab, and was based on Raven I developed at UW [59]. The

UW/UCSC team built several Raven II systems that were installed in other research

labs and subsequently spun out production to a startup company, Applied Dexter-

ity Inc., that has continued to deliver systems. The software is publicly available

under the limited GNU public license (LGPL). It utilizes a standard Linux kernel,

with the CONFIG_PREEMPT_RT patch set, so that real time control software can

run in user space and be coded in C or C++. The control loop currently runs at

a deterministic rate of 1 kHz. Key functions include coordinate transformations, in-

verse kinematics, gravity compensation, and joint-level closed loop feedback control.

The link between the control software and the motor controllers is a custom USB

interface board with eight channels of 16-bit analog output to each joint controller,

and eight 24-bit encoder inputs. The board can perform a read/write cycle for all 8

channels in 125 µs [27]. The Raven II has been integrated with ROS, which allows

easy integration with other robotic software.

95

CHAPTER 3. SOFTWARE ARCHITECTURE

3.4 Low-Level Hardware Interface Layer

(Fieldbus)

All robot control code interacts with the fieldbus through the Hardware Interface

Layer. The layer is provided by a C++ library that enables direct access to the raw

I/O data via the IEEE-1394 bus. This library has no external software dependencies,

other than libraw1394, which is a standard Linux library for communication over

IEEE-1394. Other drivers, such as RT-FireWire [100], could be used to obtain hard

real-time performance (although RT-FireWire is no longer maintained). There is

also a Microsoft Windows implementation of libraw1394 [90]. The API consists

of two main abstract base classes: a BasePort class to represent a hardware port

(e.g., FireWire or Ethernet), and a BoardIO class to represent one FPGA node on

the bus. Currently, the only derived class from BoardIO is AmpIO, which corresponds

to the FPGA/QLA board set. Figure 3.2 presents a Unified Modeling Language

(UML) class diagram of these base and derived classes. For a typical system, one

port will connect to multiple FPGA nodes; thus the BasePort object maintains a

list of BoardIO objects. The BasePort class contains two methods, ReadAllBoards

and WriteAllBoards, which read all feedback data into local buffers and transmit all

output data from local buffers, respectively. This allows the class to implement more

efficient communication mechanisms, such as the broadcast write and consolidated

read described in previous sections. The AmpIO API provides a set of functions to

96

CHAPTER 3. SOFTWARE ARCHITECTURE

extract feedback data, such as encoder positions, from the read buffer, and to write

data, such as desired motor currents, into the write buffer. All data types are unsigned

integers because they are stored as counts (or bits) in FPGA registers.

Figure 3.2: UML class diagram of interface software (subset of class members
shown): the design can scale and support different field bus implementations as well
as different board designs.

97

CHAPTER 3. SOFTWARE ARCHITECTURE

3.5 Real-time framework for robot con-

trol

This section describes the middle layer in the software architecture, which is the

real-time framework for robot control. This includes the Low Level Control and Mid

Level Control shown in Figure 3.1. The Low Level Control implements the joint con-

trollers for the da Vinci manipulators and is typically configured to run at 3 kHz.

The Mid Level Control incorporates the robot kinematics and contains a state ma-

chine that manages the robot states (e.g., homing, idle, moving in joint or Cartesian

space); it typically runs at 1 kHz. My contributions are: (1) the Design Analysis of

the inter-component communication mechanisms, presented in Section 3.5.2, which

favors the use of the cisst synchronous (ExecIn/ExecOut) communication mechanism

between components in the same process, and (2) the design and implementation of

the mtsRobotIO1394 class, described in Section 3.5.3, that manages the IEEE-1394

fieldbus and uses its ExecOut interface to synchronously execute the low-level control

components (mtsPID) for each manipulator. Much of the remaining low-level and

mid-level control software was implemented by Anton Deguet.

3.5.1 Design Goals

There are two primary design requirements:

98

CHAPTER 3. SOFTWARE ARCHITECTURE

1. A component-based framework, with well-defined interfaces between compo-

nents, to enable different control methods to be easily deployed to the system.

2. Efficient communication between components to support control rates of 1 kHz

or more.

These requirements influence the choice of both the execution model and commu-

nication paradigm. Specifically, the components can execute as separate processes

(e.g., as ROS nodes) or can execute within a single process, using multi-threading or

sharing a single thread. Communication can be implemented as client/server (e.g.,

remote procedure call) or as publish/subscribe, as exemplified by ROS services and

topics, respectively. The following section analyzes the performance tradeoffs of these

choices.

3.5.2 Design Analysis

We consider two key performance characteristics, which are: (1) the manner in

which low-frequency components handle feedback from high-frequency components,

and (2) the latency of component communications.

First, we consider the ability to handle data exchange between components with

different execution rates in a timely and reliable manner. The key requirement is to

deliver the latest data to the consumer component with minimum latency and over-

head. In particular, we consider the case where the consumer component (e.g., Mid

99

CHAPTER 3. SOFTWARE ARCHITECTURE

Level Control) is running at a lower rate than the producer component (e.g., Low

Level Control). For a publisher and subscriber system using a simple UDP imple-

mentation, the consumer’s queue can become full and start to drop new arrival data

(head-of-line blocking problem). Besides, UDP does not guarantee data delivery. The

ROS subscriber handles this case better by dropping the oldest data in the queue and

by using the TCP protocol by default for more reliable data transmission. However,

when multiple messages are queued on the consumer component, the registered sub-

scriber function is called multiple times (depending on queue size), creating extra

overhead. Setting the receiver queue size to 1 removes this overhead but can result

in intermittent dropped packets; we have observed 4 dropped packets out of 27,282

packets, for a 99.985% delivery rate.

Second, we consider communication latency. One option is to spawn a process

for each component and rely on inter-process communication (IPC) mechanisms such

as ROS for data exchange. Figure 3.3 shows two setups we evaluated. Both setups

use the same publisher component C1, which is a ROS node, running at 1 kHz. The

published messages from C1 are subscribed either by C2 running ros::spinOnce()

(equivalent to periodically polling) or C3 running ros::spin(). Timing data is

collected by time stamping a ROS message before it is published, and computing the

difference between the wall clock time and the stamped time in the subscriber callback

function. In a periodic polling setup, the communication latency is depdendent on

the loop rate. When C2 calls ros::spinOnce() at 1 kHz (see Figure 3.4(a)), the

100

CHAPTER 3. SOFTWARE ARCHITECTURE
Real‐Time Control

C1
(publisher)

1 kHz

C2
(subscriber)

1 kHz, ros::spinOnce()

C1
(publisher)

1 kHz

C3
(subscriber)

1 kHz, ros::spin()

(a) Subscriber calls ros::spinOnce() at 1 kHz

Real‐Time Control

C1
(publisher)

1 kHz

C2
(subscriber)

1 kHz, ros::spinOnce()

C1
(publisher)

1 kHz

C3
(subscriber)

ros::spin()

(b) Subscriber calls ros::spin()

Figure 3.3: ROS system publisher/subscriber latency test setup. ROS node C1 runs
at 1 kHz and publishes to ROS node C2 or C3. C2 calls ros::spinOnce() at 1 kHz,
whereas C3 calls ros::spin() to wait for publisher.

mean latency between C1 and C2 is 792 µs, which is more than half the node update

period. This can be improved by having the subscriber wait for the publisher, as

demonstrated by ROS nodes C1 and C3, where C3 calls ros::spin(). Figure 3.4(b)

shows that this decreases the mean latency to 244 µs, with a maximum latency of

2,129 µs. While the mean latency is negligible for systems running at slower rates,

such as 100 Hz, it is substantial for control loops at 1 kHz or higher. Moreover, this

measurement requires the subscriber to wait for the publisher. To make things worse,

101

CHAPTER 3. SOFTWARE ARCHITECTURE

the data does not just flow one-way in robotic control and the subscriber (e.g., low-

level control node) typically needs to do some computation on the incoming sensor

data and publish the results back to the publisher (e.g., hardware interface node) for

execution.

A multi-threaded component-based robotic middleware, such as OROCOS from

Katholieke Universiteit Leuven and cisst [23] from JHU, can use a lock-free shared

memory implementation to minimize the overhead of data delivery and to ensure that

the latest data is available to the consumer component. It is true that this approach

can face the same data synchronization challenge if the communicating components

are in separate threads, but there is the option to chain execution of multiple com-

ponents into a single thread to avoid this issue, while still maintaining the advantage

of a component based architecture. In cisst, this is provided by special component

interfaces called ExecIn and ExecOut. The parent component (e.g., I/O component)

executes the child component (e.g., low level control) by issuing a run event. This

feature does not require modification to the component implementation (other than

placement of the RunEvent) and is activated by connecting the ExecIn interface of the

child component to the ExecOut interface of the parent component. If the ExecIn/Ex-

ecOut interfaces are not connected during system configuration, separate threads are

created for each component and they communicate asynchronously using the same

shared memory communication mechanism. Figure 3.5 shows the data transfer la-

tency between two cisst components using the ExecIn/ExecOut feature. On average,

102

CHAPTER 3. SOFTWARE ARCHITECTURE

(a) Subscriber calls ros::spinOnce at 1 kHz

(b) Subscriber calls ros::spin

Figure 3.4: ROS system publisher/subscriber latency tests. Hardware: Intel i7-
3630QM Quad-Core 2.4 GHz, 16 GB Memory. Software: Ubuntu 12.04 LTS (Kernel
3.8.0-44-generic), ROS Hydro.

103

CHAPTER 3. SOFTWARE ARCHITECTURE

the latency is 21.3 µs with a maximum value of 115.2 µs. OROCOS RTT provides

a similar capability via its PeriodicActivity class, which serially executes components

with equal periodicity and priority, based on the order in which they are started.

Figure 3.5: Communication latency in cisst, using ExecIn/ExecOut for synchronous
communication; components execute at 1 kHz, same hardware/software setup as Fig-
ure 3.4(b).

3.5.3 Implementation

Based on the above analysis, we determined that a shared-memory, multi-threaded

design is better suited for the high-frequency, low-latency control requirements for the

dVRK, which extend from the hardware interface to the low-level and mid-level con-

trol. We selected the cisst library due to our familiarity with its design; however,

other frameworks such as OROCOS would also be suitable. As shown in Figure 3.6,

the architecture consists of: (1) one hardware Input/Output (I/O) component, mt-

104

CHAPTER 3. SOFTWARE ARCHITECTURE

sRobotIO1394 (3 kHz), handling I/O communication, (2) multiple servo loop control

components, mtsPID (3 kHz, one for each manipulator) providing joint level PID

control, (3) mid-level control components (1 kHz, different components for each type

of manipulator, such as da Vinci MTM and PSM) managing forward and inverse kine-

matics computation, trajectory generation and manipulator level state transition, (4)

teleoperation components mtsTeleoperation (1 kHz) connecting MTMs and PSMs and

(5) a console component (event-triggered) emulating the master console environment

of a da Vinci system. All of these are connected using cisst provided/required inter-

faces. Note that although they are independent components, the I/O component and

the PID components for the manipulators are interconnected via the aforementioned

ExecIn/ExecOut interfaces to use a single thread, thereby guaranteeing synchronous

communication and minimal latency for maximum control performance. In this case,

the RunEvent is generated by the mtsRobotIO1394 component after it receives feed-

back from the controller boards and before it writes the control output. Thus, the

mtsPID components receive the freshest feedback data and compute the control out-

put, which is immediately sent to the hardware when the mtsPID components return

the execution thread to the mtsRobotIO1394 component.

105

CHAPTER 3. SOFTWARE ARCHITECTURE

Subscribers	Publishers	

MTM	 PSM	 MTM	 PSM	

mtsTeleopera4on	

mtsRobotIO1394	

sawROS		console	

sawROS		teleopera,on	

sawROS		psm	

sawROS		mtm	

sawROS		io	

QtConsole	

sawQtTeleop	

QtPSM	

QtMTM	

sawQtPID	

sawQtIO	

Single	thread	 SAW	component	QtWidget	component	(op4onal)	 ROS	component	(op4onal)	

mtsPID	 mtsPID	 mtsPID	 mtsPID	

Console	

mtsTeleopera4on	

PSM1	 MTMR	 PSM2	MTML	

provided	 required	

Figure 3.6: Robot tele-operation control architecture with two MTMs and two
PSMs, arranged by functional layers and showing thread boundaries [48].

3.6 System integration via ROS interfaces

ROS is used to provide a high level application interface due to its wide acceptance

in the research community, large set of utilities and tools for controlling, launching

and visualizing robots, and the benefits of a standardized middleware that enables

integration with a wide variety of systems and well-documented packages, such as

RViz (wiki.ros.org/rviz) and MoveIt! (moveit.ros.org/). It also provides a convenient

build system. As noted in the previous section, ROS is fundamentally a multi-process

software architecture (though multiple nodelets can be used within a single node).

While this may have disadvantages for real-time control, in a larger system it has

the advantages that it limits the scope of an error to a single process and facilitates

software development by minimizing the need to restart and re-initialize the robot

(i.e., as long as the robot process is not restarted). This section presents the bridge-

based design that enables integration of the cisst real-time control framework within

a ROS environment, followed by a discussion of dVRK’s ROS ecosystem.

106

CHAPTER 3. SOFTWARE ARCHITECTURE

3.6.1 CISST to ROS Bridge

To add support for ROS, a bridge based design was implemented. This imple-

mentation includes a set of conversion funtions, a cisst publisher and subscriber, and

a software bridge component. The bridge component is both a periodic component

(inherits from mtsTaskPeriodic) and a ROS node. As an mtsTaskPeriodic compo-

nent, it is executed periodically at a user specified frequency and connected, via cisst

interfaces, to the other cisst components. The bridge component also functions as a

ROS node with a node handle that can publish and subscribe to ROS messages.

To illustrate this design, consider the example in Figure 3.7, which has one cisst

component connected to a ROS node via a cisst-to-ROS bridge. The cisst component

contains a provided interface with two commands: (1) the ReadVal1 command to read

the value of mVal1, and (2) the WriteVal2 command to write a value to mVal2. The

component assigns mVal2 to mVal1 in its periodic Run method. A cisst publisher

is created in the bridge component that connects to the ReadVal1 command and

publishes to the ROS topic /Val1. Similarly, a cisst subscriber subscribes to the ROS

topic /Val2 and connects to the WriteVal2 command. On the ROS side, the node

simply subscribes to /Val1, increments the received value, and publishes to /Val2.

At runtime, the bridge node fetches data through the cisst interface, converts it to

a ROS message, and then publishes the message to ROS. In the reverse direction,

the ros::spinOnce function is called at the end of the Run method, which calls

the subscriber callback function, converts data, and triggers the corresponding cisst

107

CHAPTER 3. SOFTWARE ARCHITECTURE

write command. The bridge always publishes at its specified update rate. If the cisst

component is faster than the bridge component, the bridge only fetches the latest data

at runtime, thus throttling the data flow. If the bridge component updates faster, it

publishes the latest data at the bridge’s rate. For certain applications that require

publishing and subscribing at the exact controller update rate, programmers can

either create a separate bridge for each cisst controller component or directly initialize

a publisher node within the cisst component and call publish and ros::spinOnce

manually.

cisst Component

Members:
mVal1, mVal2

cisst Commands:
ReadVal1
WriteVal2

Run(){
 mVal1 = mVal2
}

Bridge Component

Publish Val1 to /Val1
Subscribe to /Val2

Val2Callback(msg) {
 ROS2Cisst(msg,data)
 WriteVal2(data)
}

Run() {
 ReadVal1(data)
 CisstToROS(data,msg)
 PublishVal1(msg)
 ros::spinOnce()
}

ROS Node

Subscribe to /Val1
Publish to /Val2

Val1Callback(data)
{
 Val2 = Val1 + 1
 PublishVal2(Val2)
}

Figure 3.7: cisst/ROS bridge example: a cisst component interfaces with a ROS
node using a bridge component. The ROS node subscribes to Val1, increments it and
publishes to Val2.

108

CHAPTER 3. SOFTWARE ARCHITECTURE

3.6.2 ROS Ecosystem

The dVRK ROS stack includes the cisst-to-ROS bridge as a package and a robot

description package with ROS Unified Robot Description Format (URDF) files for

the MTM, PSM and ECM. These URDF files are used for visualization and kinematic

simulation in RViz. Some use cases that take advantage of the ROS interface and

simulation are to use a real MTM and foot pedal as input devices to tele-operate a

simulated PSM [64] or alternate slave robot, such as the Raven-II [32]. In fact, over

half of the researchers who have dVRK systems have used this ROS interface for their

research, mostly by implementing high-level controllers that communicate with the

dVRK mid-level controller via ROS.

3.7 Discussion and Conclusion

In this chapter, we presented a scalable, reconfigurable, real-time and ROS com-

patible software architecture for dVRK. The architecture includes three layers: (1)

distributed hardware interface via a high-bandwidth, low-latency fieldbus, (2) real-

time component-based framework with multi-threading and thread-safe shared mem-

ory communication, and (3) high-level integration with the ROS ecosystem. The

BasePort and BoardIO classes (and derived classes) defined in Section 3.4 represent

the transition between the distributed hardware layer and the real-time framework,

whereas the cisst-to-ROS bridge defined in Section 3.6 provides the interface between

109

CHAPTER 3. SOFTWARE ARCHITECTURE

the real-time framework and the ROS environment.

Although the architecture is designed to support dVRK, there are several concepts

and lessons that can be generalized to other robots, including single robot systems:

1. The design pattern for sharing single resources such as a fieldbus and/or a

computation thread among multiple robots while keeping them as independent

entities, as summarized in Figure 3.2.

2. The separation of I/O and robot-specific control via the Hardware Interface

Layer and the component-based design, and the use of a synchronous execution

model (ExecIn/ExecOut) for efficiency. This can be generalized to other robots,

including single robot systems. For example, in Laboratory for Computational

Sensing and Robotics (LCSR), there are several robots that use Galil controllers

(Galil Motion Control, Rocklin, CA), but they all have different C++ compo-

nents that interface via Ethernet/PCI to the Galil controllers. Applying this

concept, they can share a common mtsGalilControllerIO component that han-

dles the I/O and then synchronously invoke robot-specific computations via the

ExecIn/ExecOut interfaces.

This software stack has been used extensively among the dVRK community and

some researchers have made contributions, including a ROS physics simulation and

a MATLAB Simulink R⃝to C++ interface [76]. We are also aware of an ongoing ef-

fort for Real-Time ROS (RTROS) [14], using the Ach library [22]. In this case, it

110

CHAPTER 3. SOFTWARE ARCHITECTURE

would be possible to replace cisst component-based communication with Real-Time

ROS (RTROS). The key benefit of this approach is that it would provide an identi-

cal ROS Application Programming Interface (API) while still meeting hard real-time

constraints and providing sufficient performance (average 45.96 µs for publisher/sub-

scriber [14]). Therefore, researchers who are already familiar with the ROS API can

easily modify the low-level components without learning cisst. The distributed hard-

ware interface layer is the most difficult to modify because much of it is implemented

in FPGA firmware (Verilog programming language); fortunately, because it primarily

manages I/O functions, it is unlikely to require modification by researchers.

111

Chapter 4

Application to Virtual Fixture

Assisted Suturing

This chapter presents an application of the high-performance architecture to semi-

autonomous teleoperation; in particular, a suturing task in Robotic Minimally In-

vasive Surgery (RMIS). This includes research contributions in the development of

virtual fixtures for the needle passing and knot tying sub-tasks, with a multi-user

study to verify their effectiveness.

4.1 Introduction

MIS is beneficial to patients due to the smaller incisions and faster recovery times.

However, surgeons face the challenge of a limited and constrained workspace with loss

112

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

of direct visualization. The development of robot-assisted surgery via the da Vinci

surgical system [37] has addressed these challenges by providing the surgeon with

wristed instruments, augmented stereo vision and better ergonomics. Even then,

the dexterous manipulation involved in suturing and knot tying is challenging [44],

making them mentally demanding and time consuming tasks in MIS. As a result,

these skills are an important component of the training program of Fundamentals of

Laparoscopic Surgery [67] and similar robot-assisted surgery training programs.

Some researchers have attempted to automate part of this challenging task using

learning by demonstration algorithms. Mayer et al. [62] used a supervised learning

algorithm on recorded trajectories from an experienced surgeon and generated a semi-

automated procedure that can be “played back” by the robot at a later time, thus

allowing automatic task completion. Similarly, Schulman et al. [82] used a trajectory

transfer algorithm by performing a non-rigid registration between a demonstration

trajectory, generated by a human, and a test scenario. A slightly different approach is

to define the task analytically. Jackson and Cavusoglu [38] split the suturing task into

five steps: Needle Approach, Needle Bite, Needle Reorientation, Needle Regrasping

and Needle Follow Through, providing a path planning algorithm for each step. In a

subsequent paper, Chow et al. [21] presented a vision guided automatic knot tying

system, where the robot automatically ties a knot at a user selected position.

Although the fully autonomous and semi-autonomous approaches are promising,

they will continue to be a challenge for the foreseeable future due to technical dif-

113

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

ficulties and regulatory concerns. Specifically, the suturing task in these works has

been oversimplified and will require additional work to transfer to a real surgical set-

ting. We have taken a surgeon-in-the-loop approach, where “virtual fixtures” (e.g.,

[74, 45, 47, 97]) are used to reduce uncertainty in motion, thereby improving operation

accuracy and reducing mental stress on the surgeon.

Kapoor et al. [45] presented a constrained optimizer framework to define vir-

tual fixtures for a suturing task (catering to the needle alignment sub-step and bite

sub-step) with a cooperative robot. Their experimental evaluation was limited to

measuring the deviation of the performed trajectory from the ideal path. Later, the

authors [47] applied the framework to a knot positioning task (the last step of the

knot tying task), which requires a multi-robot cooperation. Virtual fixtures were used

to maintain certain spatial relationships between the two cooperative robots. In a

follow-up paper, Xia et al. [97] extended this approach to a master/slave teleopera-

tion robot (da Vinci Surgical Robot) with the same knot positioning task. However,

the authors only presented an experimental protocol without any experimental data

proving its effectiveness.

In this chapter, we implemented and validated virtual fixtures to assist the user

during the needle passing and knot tying sub-tasks on a teleoperated robotic system.

Section 4.2 gives an overview of contributions. In Section 4.3, we present a new

approach to define virtual fixtures in the task frame, along with an explanation of

the needle passing and knot tying virtual fixtures. Section 4.4 describes the system

114

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

implementation details and the validation experiment and user study. The outcomes

of the study and a discussion of the experimental findings is provided in Section 4.5.

Finally, we conclude this chapter by discussing possible future research directions in

Section 4.6.

4.2 Thesis Contributions

This application contains several research contributions. First, it introduced a

novel multi-level haptic rendering mechanism featuring a low-level fast updating hap-

tic rendering based on simple models, and an easy to program interface for high level

behaviors. Another contribution is the design of two virtual fixtures: one that guides

a circular motion for the needle passing task and another plane virtual fixture that

constrains motion onto the plane for the knot tying task. The last contribution is the

experimental evaluation of the two virtual fixtures via a multi-user study. This work

was developed in collaboration with several individuals. Anton Deguet and Preetham

Chalasani assisted with software development, Dr. Anand Malpani helped in evalu-

ating and selecting virtual fixtures and Dr. S. Swaroop Vedula helped on user study

design and data analysis. Much of the content of this chapter was published in [20].

115

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

4.3 Virtual Fixtures

Virtual Fixtures are used to augment sensory information by constraining or guid-

ing motion in order to improve performance of a surgeon in direct or remotely manip-

ulated tasks. In this paper, we implement a couple of virtual fixtures on the master

side manipulators to enhance the accuracy and efficiency of the surgeon performing

a suturing task. The da Vinci surgical system is highly optimized to follow motions

of the master manipulator. Thus, we chose to implement these fixtures on the mas-

ter side of the robot. Constraining the surgeon’s hand motion by master-side VFs

does not alter the basic position-based telemanipulation control loop of the robot and

therefore does not interfere with the safety and system assurance associated with the

basic telemanipulation function.

In the following subsections, we will discuss the implementations of the VF in

detail – by describing the suturing task (Section 4.3.1), by providing the generic

formulation of an impedance type VF (Section 4.3.2), and, by formulating the sub-

task specific VF for the needle passing and knot tying steps (Sections 4.3.3 and 4.3.4,

respectively).

4.3.1 Task Description and Analysis

Suturing is an important step in multiple surgical procedures and an integral

component of surgical skills training curricula. It is also considered difficult to master

116

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

in terms of dexterity and time consuming tasks in MIS [77]. Although specialized

instruments like Endo StitchTM (Covidien, Medtronic), are used in traditional MIS to

reduce operating time, the conventional suturing and knot tying technique remains the

most popular and cost effective method [66]. The suturing step often requires multiple

attempts by the surgeon, which extends the operating time [77]. We argue that

providing virtual fixture assistance will increase the accuracy in task performance,

and significantly decrease the time per stitch. This technique can be used to train

novice surgeons.

4.3.2 Impedance Virtual Fixture

We have used an impedance-type VF, wherein forces are exerted on the surgeon’s

hands to provide guidance. In our experience, these forces do not interfere signif-

icantly with basic control stability, and the slave manipulator simply follows the

master motions. Furthermore, we can easily combine different assistance behaviors

like gravity compensation with an impedance VF by simply adding the desired joint

torques that were computed for each case, as shown in Figure 4.1.

To define the VF controller behavior, the teleoperation component sets a force/-

torque compliance frame Fc = [Rc, p⃗c] defined in the master base frame, together

with position stiffness gains k⃗(+), k⃗(−), position damping gains b⃗(+), b⃗(−) and force

bias terms g⃗(+), g⃗(−). Similarly, we have the orientation torque bias terms τ⃗ (+), τ⃗ (−)

and orientation stiffness factors k⃗(+)
o , k⃗(−)

o . In the above, the (+) and (−) superscripts

117

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

𝒒, 𝒒, 𝒑, 𝒑

Virtual Fixture
Algorithm

Gravity
Compensation

Virtual Fixture Set

Robot
Dynamics

Operator Input

+
𝝉

𝝉𝒗𝒇

𝝉𝒈𝒄

Figure 4.1: Impedance Type Controller :
q - joint position; q̇ - joint velocity; p - Cartesian position; ṗ - Cartesian velocity; τ
- total joint torque applied to robot; τvf - joint torque from virtual fixture controller;
τgc - joint torque from gravity compensation.

denote whether the parameter applies to motions/forces in the positive or negative

directions, respectively. Desired forces and torques applied on the master tip are rep-

resented by f⃗ and t⃗, respectively. Given the current velocity ṗ, Algorithm 1 presents

the pseudo-code for computing the desired force and torque that should be applied

on the master tip.

One advantage of our design for VF is that it permits very fast haptic rendering

of discontinuous impedance environments in the local configuration space near the

slave end effector, also allowing a very versatile description of local VF behavior.

Further, it permits simple combinations of VF elements. Although the low-level VFs

directly supported by this formulation are very simple, more complex VFs may be

implemented by updating the parameters at a reasonably fast update rate that is

nevertheless slower than the very fast rates associated with haptic rendering. In our

118

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

current implementation, we use a haptic update rate of 1 KHz and a VF update rate

of 500 Hz.

Algorithm 1 Impedance Virtual Fixture
1: if Enabled then
2: # —— Force ——
3: q⃗ = F −1

c p⃗ = R−1
c (p⃗ − p⃗c) ▷ Position Error

4: v⃗ = R−1
c ṗ ▷ Velocity in compliance frame

5: for i ∈ {x, y, z} do
6: if q⃗i ≤ 0 then
7: g⃗i = g⃗

(−)
i + k⃗

(−)
i q⃗i + b⃗

(−)
i v⃗i

8: else
9: g⃗i = g⃗

(+)
i + k⃗

(+)
i q⃗i + b⃗

(+)
i v⃗i

10: end if
11: end for
12: f⃗ = Rcg⃗ ▷ Desired force
13:
14: # —— Torque ——
15: △R = R−1

c R

16: Compute θ⃗ such that exp(skew(θ⃗)) = △R
17: for i ∈ {x, y, z} do
18: if θ⃗i ≤ 0 then
19: τ⃗i = τ⃗

(−)
i + k⃗

(−)
oi θ⃗i

20: else
21: τ⃗i = τ⃗

(+)
i + k⃗

(+)
oi θ⃗i

22: end if
23: end for
24: t⃗ = Rcτ⃗ ▷ Desired torque
25: end if

An example of a one-sided forbidden region plane virtual fixture is shown in Figure

4.2. A 3D plane can be defined by a point pplane and a vector Nplane, normal to the

plane. The force/torque frame is defined with its origin at pplane and its Z axis as

Nplane. The X and Y axes can be chosen freely as long as they form a right-handed

coordinate frame. For example, if the positive and negative force stiffness gains are

119

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

set to [0, 0, 0] and [0, 0, 500] respectively, the user is free to move on one side of the

plane while feeling a force pushing him/her away from the forbidden side of the plane.

Forbidden Region
Free Motion Region

Pplane

Nplane

Master Tip
Frame

Force Pushing Master
Out of Forbidden Region

Force/Torque
Frame

Figure 4.2: Plane forbidden region virtual fixture

4.3.3 Needle Passing Virtual Fixture

In the needle passing sub-task, we provide a three-phase virtual fixture: (i) to

bring the needle to a desired orientation, (ii) to guide the user to the entry point, and

(iii) to guide the user to pierce through the tissue in a constrained circular motion.

As the desired rotation and position are known to the system, transitions between

the three virtual fixture phases are automatic based on rotation and position errors

without any additional user interaction via a foot pedal, for example.

In this study, we used a 3D-printed needle holder (Figure 4.6) to ensure that

the needle was held consistently in a known relative pose across a user’s trials (task

repetitions). Although the use of a needle holder prevents the needle from piercing

120

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

through the tissue, and thus makes it impossible to complete a suture, this approach

allows us to factor out the effect of variability in the environment on the task perfor-

mance and focus our analysis on evaluating the design and effectiveness of the virtual

fixture. The needle tip frame can be computed using robot forward kinematics and

the known needle holder design. Optionally, computer vision techniques can be used

to determine the relative pose of the needle with respect to the robot tool tip frame;

however, that is outside the scope of this work.

The user starts the virtual fixture by pressing the CAMERA pedal. Once the foot

pedal event is detected, a force/torque compliance frame is defined at the current

gripper position with a precomputed orientation based on the ideal entry pose for the

needle. Positive gain values with zero offset are set for all three axes for the force

and torque frames. This virtual fixture will apply a force and torque on the master

manipulator to guide the user to orient the needle. The system constantly monitors

the orientation error and moves on to the second phase if the error is within a set

threshold value – determined empirically to ensure accuracy but at the same time

allow smooth phase transition. In the second phase, the position of the force/torque

compliance frame is changed to the desired position, while orientation and gain values

remain unchanged.

After the needle is in the correct pose, the third phase virtual fixture is enabled

to guide the user to pierce through the tissue. We define a circle with its origin at

the center of the needle and the radius same as the needle radius to constrain the

121

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

Needle Tip

Desired Pose. Origin
is Closest Point

Figure 4.3: Needle passing circular motion virtual fixture.

needle driving motion. The virtual fixture frame is updated every single loop by

setting the origin as the closest point on the desired circle (see Figure 4.3), the Y

axis points towards the center of the circle, and the Z axis is normal to the plane of

the circle. The virtual fixture position gains along the Y and Z axes are set to large

values to maintain the needle along the circle, while the X axis gain is set to zero

to allow the user to freely move along the needle and the circle. Orientation gains

are set to large values for the three axes, enforcing the needle tip to move along the

predefined circular path. With these settings, the needle motion is constrained along

the circle with correct orientation. The gain values were determined empirically –

strong enough to provide effective guidance, but soft enough so that the user can

over-power it when necessary to compensate for small modeling errors.

122

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

4.3.4 Knot Tying Virtual Fixture

The surgeon’s knot has three elements: a two loop knot followed by two single

loop knots. Here we only focus on defining the virtual fixture for the two loop knot.

A similar technique can easily be applied to the other single loop knots. One of the

challenges faced by a novice user in knot tying is to successfully loop the thread twice

around the instrument tip without slippage.

We use a plane virtual fixture (Figure 4.4) to provide assistance to the novice user

during the looping action. The plane virtual fixture is located at the clevis point of

the instrument in the non-dominant hand (the one on which the loop will be laid

upon) with a normal along the instrument pointing direction. This is a constraining

two-handed virtual fixture that allows the dominant instrument tip to move freely in

the plane defined by the virtual fixture, and pulls it back towards the plane if there

is any out of plane motion. A user can enable this virtual fixture by pressing and

holding the CAMERA MINUS foot pedal. The virtual fixture gets activated only when

the dominant instrument tip is close to the virtual fixture plane, in order to avoid

a sudden large force from being applied to the user and resulting in an undesirable

motion. The Z axis for the virtual fixture is aligned with the instrument pointing

direction. The gain values are set to be large along the +Z and -Z axes, and zero on

the X and Y axes.

123

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

Plane
Virtual Fixture

VF Frame

Tooltip is constrained to
the VF plane, motion on
the plane is free

Figure 4.4: Knot tying virtual fixture: a constraining plane (green) with its force/-
torque virtual fixture frame. It is shown here for demonstration purposes. Users can
feel it haptically, but do not see the augmented plane visually.

4.4 Experiment

We conducted a user study to evaluate the effects of virtual fixture assistance in

teleoperated robotic suturing tasks of needle passing and knot tying. The implemen-

tation of the system architecture and the execution of the user study, along with the

collected data and analyses are described in detail in the following sections.

124

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

4.4.1 System Implementation on da Vinci Research

Kit

We have implemented the described virtual fixture framework on the hardware

and software architecture proposed in this thesis. As shown in Figure 1.1, the setup

includes two MTMs, two PSMs, a Foot Pedal Tray, and a High-Resolution Stereo

Viewer (upgraded to two flat panel displays configured to 1024 × 768 resolution, as

compared to the standard dVRK systems that use CRT displays with 640 × 480

resolution). The different pedals on the foot tray can be pressed by the operators to

trigger different events that change the control system states. Our stereo vision system

comprises of two SONY lipstick cameras, which are connected to the dVRK stereo

viewer console. A stereo camera calibration procedure is performed to obtain the

intrinsic/extrinsic parameters for the camera that are later used for image rectification

and camera registration. We note that although the stereo baseline and lens-to-tissue

distances may be different if a regular da Vinci stereo endoscope is used, the stereo

visualization provided is similar enough to allow us to evaluate our virtual fixture

strategy.

The robot control is based on the software architecture proposed in chapter 3, and

the application specific high-level software is programmed in C++ and interfaces to

the robot via the ROS interface as summarized in Figure 4.5. The Task Node contains

the task-specific algorithm that defines and publishes virtual fixture commands to

125

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

MTM Right

PSM One

MTM Left

PSM Two

CISSTHardware

 Hardware
MTM Right

 Hardware
PSM One

 Hardware
MTM Left

 Hardware
PSM Two

ROS Hardware

 Stereo
Camera
System

gscam
Camera
Driver

RViz (Visualization and
Augmented Reality)

Task Node:
Teleoperation

and VF
Generation

IEEE-1394
C++ Driver

Servo Level

Middle Level CISST
to

ROS
Bridge

HSRV

Figure 4.5: Block diagram showing hardware/software connection, software compo-
nents implemented in both cisst and ROS environments

the masters based on task state. The RViz node is a ROS visualization software for

visualizing robot configuration, displaying the live stereo video stream (grabbed with

the gscam package [39]) and adding augmented reality markers for visual guidance.

4.4.2 Needle Passing Sub-task

As shown in Figure 4.6, a 15 mm thick tissue phantom is used in the experiment.

This phantom has a stiff top layer simulating the epidermis and a soft dense foam

layer simulating the dermis. A large needle driver instrument from Intuitive Surgical

Inc. is chosen to operate a 3/8 circle 26 mm reverse cutting suture needle fixed in a

3D printed needle holder. The needle holder is designed to tightly fit the large needle

126

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

driver gripper to ensure that the needle cannot move with respect to the instrument

during the test. On the tissue phantom, the target entry and exit points are marked

with dark color dots such that they can be easily identified through the stereo viewer

on the master console. The operating area is placed at the center of the camera view.

Before each trial, the instrument is moved to the same starting pose.

Large Needle Drivers
(Intuitive Surgical Inc)

3D Printed
Needle Holder

3/8 26 mm Reverse
Cutting Suture Needle

Tissue
Phantom

Marked Exit
Point

Figure 4.6: Test setup for needle passing task, including tissue phantom, suturing
needle with needle holder and a large needle driver instrument

4.4.3 Knot Tying Sub-task

Similar to the needle driving task, two large needle driver instruments (Intuitive

Surgical Inc.) are installed on the patient side manipulators. Users teleoperate, with

position scale of 0.3, the two instruments from the master console with visual feedback

through the stereo viewer. Before the task, a suture thread of 18 cm total length was

127

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

Suture Skills Pod
(The Chamberlain Group)

Large Needle Drivers
(Intuitive Surgical Inc)

1/2 26 mm Suture Needle
(SofsilkTM Silk Suture)

Figure 4.7: Test setup including a suture skills pod (phantom), a suture needle and
two large needle driver instruments

prepared on a suture skills training pod (The Chamberlain Group Inc.) commonly

used for robotic surgery training. As shown in Figure 4.7, the suture has a 3 cm tail

left on the right side of the tissue for easy grasping, 2 cm between the entry and exit

points on the phantom, and a 13 cm loose end for the knot tying operation. Again,

all the robot arms are configured to the same starting poses.

4.4.4 Test Procedure

The user study was performed with volunteer users recruited from a population

of graduate and undergraduate students at the Johns Hopkins University (JHU) and

with none to little experience in teleoperated robotic suturing. Tests were approved

by the JHU Homewood Institutional Review Board (HIRB00002925). A total of 14

128

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

participants, 13 right-handed and 1 ambidextrous, completed the trials (12 male, 2

female). None of the volunteers have neurological disorders, or uncorrected vision

problems that may negatively affect performance.

The experiment was divided into four parts: an introduction section, needle pass-

ing sub-task section, knot tying sub-task section and the subjective evaluation section.

Users started the experiment with an introduction to the suturing task by watching a

video of simulated surgical suturing using the da Vinci skills simulator and a brief in-

troduction with hands on time to become familiar with basic da Vinci operation such

as teleoperation and use of the clutch pedal. Before each sub-task, users were given

sub-task specific instructions and guidance on how to use the sub-task specific virtual

fixture before the trials. The subjects then practiced two non-recorded trials, with

one in each control mode (freehand and virtual fixture assisted), to understand the

system and the sub-task. After this, users performed 4 consecutive trials in each con-

trol mode. The order in which the test conditions were performed was balanced and

randomized between users to cancel the learning effect. Users took a break between

the two sub-tasks. Users completed a NASA TLX survey [33] after each sub-task

and a subjective evaluation questionnaire at the end of the entire trial. The whole

experiment lasted about 1.5 hours per user. None of the users verbalized fatigue as

corroborated by the self-reported TLX survey.

129

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

4.4.5 Data Collection and Analysis

The states of the MTM and PSM robots (500 Hz), video stream (30 Hz) of the

stereo cameras and foot pedals events were logged for all trials. For the needle passing

task, exit points were also recorded with high-definition cameras, from which the exit

error was measured. The performance of the needle passing task was evaluated in

terms of exit error and task completion time. For the knot tying task, task completion

time, total needle trajectory and number of times the suture slipped during the loop

were used as performance evaluation metrics. For subjective evaluation, the stan-

dard NASA TLX survey is adopted to evaluate operator workload and the subjective

evaluation questionnaire covers perceived difficulties during the suturing task, user

preference on control mode and suggestions on how to improve robotic assistance.

4.5 Results and Discussion

This section reports and discusses the results of the user study, including both

sub-tasks. There were multiple trials for each test condition, so a two-way repeated

measure analysis of variance (ANOVA) is performed, where the test mode (freehand

and virtual fixture-assisted) is the first independent variable and the user is treated

as a random variable. For TLX workload analysis, a paired t-test is used.

130

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

4.5.1 Needle Passing Sub-task

4.5.1.1 Statistical Analysis

We analyzed total task completion time from the start of needle motion until the

needle tip pierces through tissue. Figure 4.8(a) shows a boxplot of the total task

completion time. The overall mean total task completion time was 18.17 seconds.

The introduction of virtual fixture assistance reduced the mean task completion time

by 15% from 19.67 s to 16.67 s. There was a significant effect of virtual fixture

assistance (F1,84 = 5.62, p = 0.02) and user (F13,84 = 6.33, p < 0.01) on total task

completion time. The interaction effect between virtual fixture assistance and user

was also significant (F13,84 = 3.23, p < 0.01).

The measured exit error is defined as the distance between the marked target

point and the needle exit point. Figure 4.8(b) shows a boxplot of the measured exit

error. The mean exit error when virtual fixture assistance is enabled was 0.88 mm,

while the mean error in freehand mode was 3.38 mm. The effect was significant

(F1,84 = 155.36, p < 0.01). The effect of users was also significant (F13,84 = 2.63,

p < 0.01), but there was no significant interaction effect (F13,84 = 1.05, p = 0.41).

4.5.1.2 Trajectory Analysis

In comparing freehand to virtual fixture modes, we noticed that in freehand mode,

users tend to first move down in a straight line with the intent to pierce the needle

131

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

Freehand VF

Control Mode

10

20

30

40

50

60

T
im

e
 (

s
)

Needle Passing Total Time

Freehand VF

Control Mode

0

1

2

3

4

5

6

7

8

9

E
x
it
 E

rr
o
r

(m
m

)

Needle Passing Exit Error

Figure 4.8: Boxplots showing the needle passing task completion time under two
test conditions (left) and needle exit point error (right). For all boxplots in this
chapter, the red centerline represents the median, the upper and lower edge of each
box corresponds to 25th and 75th percentiles, and the whiskers extend to the most
extreme data points. The red cross points are considered outliers [28].

through the tissue before they even start rotating the needle. Figure 4.9(a) illustrates

this tendency. With virtual fixture assistance, the user moves and rotates the master

simultaneously, resulting in a smooth circular motion as shown in Figure 4.9(b), which

can effectively reduce stress on the tissue.

Another important finding is that, in freehand mode, users tend to re-adjust the

needle trajectory when they find that the needle exit point might be far away (e.g.,

5 mm) from the target exit point by pulling the needle out vertically and redoing

the operation, which could potentially increase the possibility of tearing tissues and

explain the longer total task completion time.

132

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

-0.145

0.135 -0.072

-0.14

-0.135

-0.07

z
 (

m
)

Needle Trajectory (Freehand)

x (m) y (m)

-0.13

0.13
-0.068

-0.125

-0.0660.125

(a) Freehand

-0.145

0.135 -0.08

-0.14

-0.135

0.13

Needle Trajectory (VF)

z
 (

m
) -0.13

x (m) y (m)

-0.07

-0.125

0.125

-0.12

0.12 -0.06

(b) Virtual fixture assisted

Figure 4.9: Comparison of needle passing trajectories: left is needle trajectory in
freehand motion, right is trajectory from the same user with virtual fixture assistance.

4.5.1.3 Operator Workload

The boxplot shown in Figure 4.10(a) summarizes the overall workload (the sum

of the responses to all categories). The mean workload for freehand mode was 23.86

compared with 13.57 for virtual fixture assistance (the scale ranges from 6 to 42,

with lower numbers indicating lower workload) and a paired t-test reveals that the

beneficial effect of virtual fixture assistance is significant (p = 0.0005).

The radar plot in Figure 4.11 shows the mean values of each workload category

self-reported by the users in the NASA TLX survey. Virtual fixture assisted needle

passing resulted in less workload than the freehand mode in all categories.

133

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

Freehand VF
5

10

15

20

25

30

35

40

T
o

ta
l
T

L
X

 W
o

rk
lo

a
d

,
ra

n
g

e
:

6
-4

2

(a) Needle Passing
Freehand VF

10

15

20

25

30

35

T
o

ta
l
T

L
X

 W
o

rk
lo

a
d
,
ra

n
g
e

:
6
-4

2

(b) Knot Tying

Figure 4.10: Boxplot showing the total operator workload as self-reported via the
NASA TLX survey for each test mode. Left is from the needle passing sub-task and
right is from the knot tying sub-task.

Mental

PhysicalTemporal

Performance

Effort Frustration

1

7

Free Hand

VF Assisted

Figure 4.11: Needle passing task, NASA TLX survey radar plot of average categor-
ical workload as self-reported by the users. Workloads increase from the center.

134

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

4.5.1.4 Subjective Evaluation

Participants unanimously opted for virtual fixture-assisted mode rather than free-

hand mode for the needle passing task. The ability to find the right entry orientation

was the favorite feature. One user also suggested that a text hint on when to start

and stop virtual fixture assistance can be helpful.

4.5.2 Knot Tying Sub-task

4.5.2.1 Errors (Number of Slips)

The motivation behind the plane virtual fixture is to prevent the slip events com-

mon for novice users. Our findings show that the plane virtual fixture does help

reduce the average number of slips per trial from 1.5 in freehand mode to 0.34. The

effect of virtual fixture assistance is significant (F1,84 = 28.87, p < 0.01). The data do

not provide statistically significant evidence that the overall skill level of the “novice”

participants was the same (F13,84 = 1.47, p = 0.15) or that the amount of improve-

ment was uniform across users (F13,84 = 1.17, p = 0.31). Therefore, it is possible

that different users will benefit from virtual fixture assistance by different amounts.

It needs to be pointed out that not all slips happened during the suture wrapping

process. In fact, a few slips happened when the user had already finished the loop

and was trying to reach and grab the suture tail, but failed due to lack of good depth

perception with the pair of small video cameras that we used. This issue can be

135

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

alleviated by providing a better stereo visualization system.

4.5.2.2 Task completion and trajectory length

Noticeable benefits in task completion time were observed when using virtual

fixture assistance (F1,84 = 16.15, p < 0.01). Similarly, a statistically significant

difference in PSMs trajectory length (both of PSM1 and PSM2 trajectory) was also

found (F1,84 = 11.35, p < 0.01 for PSM1, F1,84 = 12.39, p < 0.01 for PSM2).

Figure 4.12 shows boxplots of task completion time versus trial number from two

different test orders. Users who did freehand mode first demonstrated a clear learning

curve. Especially for the first trial, the mean completion time was 67.62 seconds for

the freehand user compared with 49.71 seconds for the virtual fixture-assisted user.

Although the difference is not statistically significant, it still suggests that virtual

fixture assistance can potentially help novice users complete the task in a more timely

manner.

4.5.2.3 Operator Workload

A summary of the overall workload (the sum of the responses to all the categories

in the TLX survey) is shown in Figure 4.10(b). The overall mean operator workload

is 26.57 for freehand mode and 16.93 for virtual fixture-assisted mode. The effect

of assistance was significant (p = 0.0001054). Figure 4.13 shows a radar plot of

the mean ratings for each workload category. The radar plot shows that the virtual

136

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

1 2 3 4 5 6 7 8

Trial No.

0

10

20

30

40

50

60

70

80

90

100

T
a

s
k
 C

o
m

p
le

ti
o

n
 T

im
e

 (
s
e

c
s
)

Freehand (Trial 1-4) then VF-Assisted (Trial 5-8)

1 2 3 4 5 6 7 8

Trial No.

0

10

20

30

40

50

60

70

80

90

100

T
a

s
k
 C

o
m

p
le

ti
o

n
 T

im
e

 (
s
e

c
s
)

VF-Assisted (Trial 1-4) then Freehand (Trial 5-8)

Figure 4.12: Boxplots of knot tying task completion time versus trial number. The
left figure is from users who did freehand mode first followed by virtual fixture-assisted
mode and the right figure from users with the opposite order.

fixture assisted mode has a lower perceived workload in every one of the five categories.

Also, compared with the needle passing sub-task, the knot tying task is a much more

challenging task physically and mentally and requires more effort to finish.

4.5.2.4 Subjective Evaluation

In the questionnaire, 12 out of 14 users indicated that they prefer virtual fixture

assistance to freehand mode. One of the two users who preferred freehand mode

stated that the reason was that freehand mode felt less constrained. Another user

suggested that giving a little more time to get used to the virtual fixture during the

pre-evaluation phases of the experimental protocol might have improved performance.

137

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

Mental

PhysicalTemporal

Performance

Effort Frustration

1

7

Free Hand

VF Assisted

Figure 4.13: Knot tying task, NASA TLX survey radar plot of average categorical
workload as self-reported by the users. Workloads increase from the center.

138

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

4.6 Summary and Future Work

This chapter has described the implementation of virtual fixture assistance on a

dVRK and reports the results of a user study to compare the performance of virtual

fixture assistance and freehand teleoperation in both needle passing and knot tying

suturing sub-tasks.

Despite bringing the benefits of small incisions and fast recovery times to the

patient, MIS presents a constrained workspace and limited vision feedback for the

surgeon. In particular, suturing remains the most demanding and time consuming

task even with a teleoperated surgical system. This work addresses these problems

by providing impedance type virtual fixtures to assist the surgeon to complete the

task in an accurate and efficient manner. These fixtures are applied on the master

side without breaking the direct master to slave teleoperation link. In particular, a

force compliance frame with force/torque gains and offsets is defined in the master

workspace based on the current state of the task. This approach may have significant

value in introducing virtual fixture assistance in complex telesurgical systems in which

maintaining the integrity of a high bandwidth master-slave control loop is vital.

The results of our user study indicate that virtual fixtures can significantly improve

needle exit accuracy, thus reducing tissue tearing pressure. During the knot tying

task, virtual fixture assistance reduces average task completion time, total trajectory

length and number of slips during the task.

One interesting aspect of knot tying is that it is an inherently two-handed task.

139

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

Accordingly, we developed a two-handed virtual fixture to prevent the thread from

slipping off the gripper during both the thread wrapping and tail grasping phases of

tying the knot. The success of this strategy illustrates the potential importance of

such two-handed, coordinated virtual fixtures in such tasks, and we plan to investigate

these further for other tasks.

For haptic rendering, although the current Algorithm 1 is fast and versatile, the

force and torque representations are independent and decoupled; i.e., the force output

(f⃗) is only dependent on the position error q⃗ and its derivative and the torque output

only on the rotation error. This works fine for relatively simple virtual fixtures such

as the plane virtual fixture used in the knot tying sub-task, however, it can become

a limitation if we want to specify a virtual fixture with a coupled force and torque

rendering. One example is to render a haptic assistance cue for driving a screw,

which involves both the rotational torque and a pushing force along the screw axis.

To overcome this, a coupled representation with full 6 DOF can be used to represent

renderings that require simultaneous positional and rotational haptic cues.

Future work includes the development and evaluation of different approaches for

the knot tying virtual fixture. In this regard, it is possible to explore the trade-

offs involved in different virtual fixture implementations and gains for these tasks.

Similarly, we recognize that computer vision techniques can be employed for needle

tracking and improving augmented reality performance. Another area of future work

is incorporating computer vision methods into our system to identify the needle,

140

CHAPTER 4. APPLICATION TO VIRTUAL FIXTURE ASSISTED SUTURING

thread, and tissue locations to help generate the virtual fixture constraints. Here, it is

also possible to use the stereo endoscopic camera available with the “classic” da Vinci

system in our laboratory, which runs the same open-source software environment.

Another future work item is to investigate the use of the third slave manipulator on

the da Vinci system to assist the surgeon, e.g., by assisting with tissue alignment for

needle passing or by grabbing the thread end and feeding it to the surgeon during

knot tying.

141

Chapter 5

Application to Teleoperated Space

Robotics

This chapter presents another application of the architecture towards semi-autonomous

teleoperation, which is time-delayed teleoperation of a robotic arm for satellite ser-

vicing.

5.1 Introduction

With the retirement of the space shuttle program, teleoperation of robotic space-

craft from earth has become the primary option for satellite servicing missions. The

challenge, however, is the existence of signal delays that are typically on the order of

several seconds. These delays increase the difficulty of teleoperation, especially when

142

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

the remote robot is in contact with the environment. This is the case for the task we

are considering, which is to cut the tape that secures a patch of insulation over the

satellite access panel.

Xia et al. [99] have previously proposed a model-based delay-tolerant control ap-

proach using virtual fixtures with haptic feedback, hybrid position/force control and

environment modeling update, that is robust to registration error. Previous evalua-

tions of this approach, however, either consisted of a single user [99] or compared two

system configurations that differed only in a single detail [93]. For example, Vozar

et al. [93] evaluated user performance and workload conditions with and without

hybrid position/force control, as well as with and without a 4 second round-trip de-

lay. However, model-based haptic feedback was turned off during this study as it

would only apply to one test condition. Later, a nonholonomic constraint and a non-

holonomic virtual fixture (without haptic feedback) were proposed [92] and evaluated

experimentally in a four-user pilot study.

Multi-user experiments with system configurations that differ only in a single

feature are crucial for identifying the value of that specific feature, but they do not

answer the question whether the assistance system provides a benefit with respect

to a baseline case of no assistance. It is our belief that a model-based method may

perform poorly unless it contains a critical set of features. Thus, in this chapter, we

first develop an integrated system that combines some previously presented and newly

developed methods and then experimentally verify this system against a baseline case

143

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

where no assistance is provided (except for a force safety threshold to prevent damage

to the equipment). The previously presented methods include use of a plane virtual

fixture on the master manipulator [98], hybrid position/force control on the slave

robot [99], a task monitor on the slave robot [56], and predictive display of the

cutter on the master side [92]. The new methods include a feature that enables the

operator to define and adjust the line virtual fixture, and augmented overlay of the

measured force and task monitor output. For the first time, we also consider a delay

configuration where the telemetry delay is significantly less than the video delay, which

is reflective of realistic earth-to-space communication in some scenarios. The results

show that the assistance can significantly reduce task completion time and operator

workload and that the task monitor can successfully detect failure events such as

bunching of the tape during cutting. The results also indicate that the model-based

approach can potentially take advantage of the lower telemetry delays to provide an

even greater benefit.

The rest of the chapter begins with a summary of research contributions and then

is organized as follows: First, the robot system and technical approach are detailed

in Section 5.3. Second, the system implementation, the test setup and test procedure

and metrics are described in Section 5.4. Section 5.5 presents experimental results

and offers a discussion of the findings. Finally, Section 5.6 summarizes the chapter

and discusses limitations and topics for future work.

144

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

5.2 Thesis Contributions

The research contribution of this application includes the development of a line

virtual fixture with augmented reality, a test for different time delay configurations

and a multi-user study that shows the advantages of this system. This application uti-

lizes the high performance in low-level control for haptic rendering of virtual fixtures

and the high level interface for integration with other components such as augmented

reality and the slave robot, and is another demonstration of the effectiveness the

proposed architecture.

Credits: Zihan Chen developed the line virtual fixture rendering, along with a user

interface for defining and adjusting it, conducted the user study and analyzed data.

Several components of the control architecture were proposed by other individuals

[98, 99, 56], but implemented (or reimplemented) and integrated by Zihan Chen.

This work also uses infrastructure developed by others. Specifically, the satellite

cutting test setup was developed by Vozar et al. [94, 93] and the open-source Orocos

based controller for the slave robot was developed by Jonathan Bohren [9].

5.3 Technical Approach

The model-based approach is summarized in Figure 5.1. The operator teleoperates

the remote slave robot with augmented vision feedback and haptic feedback based

on a task model. Data exchanges between the ground and remote sides are delayed

145

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

ENV

Slave
Robot

Sensor

Camera

Slave
Robot

Control

Model

Delay

Delay

Delay

Delay

Model

Teleop
Control UserMaster

Robot

Vision

Model
Update

Delay

Hardware Software Uplink Delay Downlink DelayModel

Local Data Link Data Downlink Data Uplink

Figure 5.1: System Architecture Overview. The operator teleoperates the remote
slave robot with augmented vision feedback and haptic feedback based on the task
model. Data exchanges between the ground and remote side are delayed and the
model is updated on the ground side based on delayed sensory feedback.

and the model is updated on the ground side based on delayed sensory feedback.

The rest of the section describes each component of this approach including a plane

virtual fixture, hybrid position/force controller, task monitor, line virtual fixture and

predictive display in detail.

All of these components were developed in prior work by others. My contribution

was to reimplement and/or integrate them into a single application, to develop an

augmented overlay for the task monitor output, and to develop a novel method for

specifying and adjusting the line virtual fixture.

146

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

5.3.1 Plane Virtual Fixture

Use of a plane virtual fixture was proposed by Xia et al. [98]. The motivation was

that the task space (plate) is a planar surface and automatically aligning the cutter

plane with the surface can help users by reducing their workload, thus improving

overall performance. Although we assume that a reasonably good initial guess of the

plane model is available either through initial registration or through CAD models

at the beginning of the task, both orientation and positional errors can exist in the

plane model. Methods to compensate for this registration error are presented in the

next section.

5.3.2 Hybrid Position/Force Controller and Reg-

istration Update

In subsequent work, Xia et al. [99] reported using a standard hybrid position/-

force controller (HPFC) [72] on the remote robot, where the normal to the plane

model defines the direction of force control. Once running, the HPFC is capable of

compensating for positional registration error between the real world and the virtual

plane.

Plane orientation errors can be corrected by updating the plane normal based on

the cutting trajectory, as described by Xiao et al. [57]. Figure 5.1 shows two models

in the system, namely, the plane model on the remote side used by HPFC and for

147

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

cutter orientation alignment and the plane model on the ground used for master side

haptic rendering. On the ground, the slave plane model is transformed to the master

workspace using

Nm = Rm
s · Ns (5.1)

Pm = Pmc + dist

gain
× Nm (5.2)

dist = |(Ps − Psc) · Ns|, (5.3)

where Ns, Ps are the plane normal unit vector and plane point in the slave coordinate

frame, Nm, Pm are the plane normal unit vector and point in the master coordinate

frame for haptic rendering, Pmc is the current master tip position, Rm
s is the rotation

from the slave to the master coordinate frame, Psc is the slave cutter tip position,

dist is the scalar distance between the cutter and slave plane model, and gain is the

scalar teleoperation gain from master to slave.

The plane model is updated on the ground side based on sensory data and then

transmitted to the remote side. In the case where the plane model is below the

real plate, the robot on the slave side hits the plate before the user hits the haptic

plane. The slave robot detects the contact by using force data and ignores further

commands in the plane normal direction that would move it into the plate. On the

ground (master) side, when this situation is detected, the slave side plane model and

the master haptic model get updated. In the other case when the plane model is

148

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

above the physical plane, the user feels the haptic plane first. In all cases, the user

turns on the HPFC by pressing into the haptic plane and off by pinching and lifting

the master input device at the same time. In the situation that the master CLUTCH

pedal is released, the master haptic plane model position is updated to the master

current position but the slave plane model is unchanged; this avoids sudden force

applied to the master tip. Subsequently, a similar approach was taken by Chalasani

et al. [16, 95] in teleoperation of robot instrument for tissue palpation with virtual

fixture assistance.

5.3.3 Safety and Task Monitoring

As a safety feature, the force/torque measurement on the slave side is monitored

locally. When the norm of force vector is higher than a threshold (20N), the slave

robot transitions to a safe mode, where only gravity compensation is performed.

Beyond safety monitoring, the force data is also used in a task monitoring compo-

nent. Kandaswamy et al. [43] developed a model for anomaly detection and identified

parameters based on offline experiments. Xiao et al. [56] made this parameter esti-

mation an online process. In this study, we favored the simple fixed parameter model

from [43] due to its robustness. The force in the cutting direction was estimated using

Fest = µk × |Fn| + Fc, (5.4)

149

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

where µk is the kinetic friction coefficient and Fc is the nominal cutting force. The

parameters used in this study are µk = 0.48 and Fc = 4 for the tension-based strategy

(cutter pulling up against tape seam while cutting) and µk = 0.56, Fc = 4 for the

compression-based strategy (cutter pushing down against satellite surface while cut-

ting), which are identified in [43]. The task monitor can output three possible states

as summarized in Table 5.1, where Fdiff (Fdiff = Fest −Fmeasured) is the difference be-

tween the measured and estimated forces in the cutting direction, Fsliding is the lower

threshold for the SLIDING event and Fbunch is the upper threshold that triggers the

BUNCH event. If the measured force is significantly lower than the estimated force,

it indicates that the cutter may have slipped out of the tape seam and may only be

sliding along the surface (not cutting). If the measured force is too high, it indicates

that the tape may have bunched up during cutting. Based on the previous study

[43], these threshold values are chosen to be 30% higher than the estimated force for

Fbunch and 30% lower than estimated force for Fsliding, respectively.

The Task Monitor runs on the remote side with a motivation to potentially stop

action in case of an adverse event. The results of the task monitor, including force

difference and task state, are transmitted (with telemetry delay) to the master side to

be displayed to the user, as shown in Figure 5.2. The display includes a color coded

text (green for NORMAL, orange for SLIDING, red for BUNCHING) indicating

the current cutting state and a gauge bar visually shows the difference between the

measured and estimated cutting force (the black bar) in real time. The force difference

150

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

Table 5.1: List of task monitor states.

No. Force Condition State Text Color
1 Fdiff < Fsliding SLIDING Orange
2 Fdiff > Fbunch BUNCH Red
3 Others NORMAL Green

bar operating in the green region indicates NORMAL cutting state, the red portions

on the left and right indicate the SLIDING and BUNCH states, respectively. To

prevent sudden jumps in the black force bar caused by noise in the force sensor, the

force difference is low-pass filtered before being displayed to the user.

5.3.4 Line Virtual Fixture

Given that the task is to cut the insulation seam, which is a straight line, to further

remove uncertainty from the system, a line virtual fixture with haptic feedback is also

provided to the user. The user can enable the line virtual fixture if the HPFC is turned

on and the cutter is pressed against the plate. The fixture line is initialized with a

position by projecting the current cutter position onto the plane model and a direction

of the current cutter X axis (the pointing axis) onto the same plane model. In this

mode, both position and orientation of the da Vinci master manipulator are locked

and the user controls the pointing direction of the virtual line by rotating the final

axis (roll) of the master robot.

When defined, the master to cutter mapping is modified such that moving forward

151

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

on the master side commands the cutter in the line fixture direction and moving

left/right on the master side moves the cutter in the direction that is orthogonal

to the line virtual fixture direction. Similar to the plane virtual fixture, a haptic

rendering of the line is also presented to the user to guide his/her motions. This

is a soft virtual fixture and the gains are chosen empirically such that it is strong

enough to guide users and soft enough to allow them to overpower the virtual fixture

and give lateral commands. This assistance can be further augmented by choosing

different gains on different moving directions [92], that is, with smaller gain in the

lateral direction.

5.3.5 Predictive display

A predictive cutter position is displayed to the user using a blue augmented reality

marker overlay. This display appears once the teleoperation enters FOLLOW mode.

The predicted cutter position starts off at the current cutter position and is updated

every loop cycle by integrating the command twist sent to the slave. This predicted

cutter pose is then used for overlaying the augmented blue cutter. The predictive

position is motivated by the desire to provide “real-time” feedback to the user. How-

ever, discrepancy between the predicted position and the actual cutter position can

occur due to multiple factors: First, the integration is done in different components,

one on the ground in the teleoperation component and the other on the remote side.

Second, the existence of HPFC and other controllers on the slave side implies that the

152

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

Hybrid Position/Force
Controller State

Cutting Task State

Z Axis Force (Delayed)

Predicted Cutter
Position (Blue)

Figure 5.2: Screen shot of the operator view in assisted mode.

twist command received might be modified locally. Finally, there is residual error in

external camera calibration. The predictive position is synchronized with the delayed

telemetry position from the remote site whenever the user enters the teleoperation

mode or presses a clutch button to reposition the master. These events frequently

occurred in our experiments and thus the discrepancy was minimal and did not affect

the user’s operation. One potential improvement would be a better method to prevent

accumulation of error between the predictive position and the actual position.

5.4 User Study

To evaluate the effectiveness of machine assistance in the satellite servicing task

with time delay, we conducted a user study that includes freehand and assisted modes

with different delay configurations. This section reports the system implementation,

153

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

 Stereo
Camera
System

Rviz
(Augmented

Reality)

Teleop
- Control
- Haptics Cmd
- Visualization
- Model Update

CISST MTM
Control

&
Foot Pedal

Driver

MTM
Right WAM

JR3 FT
Sensor

HSRV

Uplink
Delay

Foot
Pedal

Downlink
Delay

Video
Delay

Gscam
Camera
Driver

JR3
Diver

Orocos WAM
Control

ROSHardware CISST Orocos

Figure 5.3: Block diagram showing hardware and software components in the system

operating conditions, and test procedure, followed by the data collection and analysis

metrics.

5.4.1 System Implementation

The above discussed teleoperation system is implemented in a testbed at Johns

Hopkins University (JHU). Figure 5.3 is a block diagram that summarizes the hard-

ware, software system and their connections.

The master console from the dVRK platform provides the master input device

for the user and consists of two 7 DOF da Vinci MTMs, of which only the right

MTM is used, a Foot Pedal Tray, and a High Resolution Stereo Viewer (1024 x 768

in our system, though many other dVRK systems are 640 x 480). The buttons on

the foot pedal tray can be triggered by the user as control input (e.g., to enable

154

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

teleoperation, define and cancel the line virtual fixture). The dVRK is controlled by

the custom IEEE-1394 (FireWire) controller described in Chapter 2, with the multi-

rate component-based software architecture based on the open-source cisst/SAW [23]

libraries on a Linux PC, as described in Chapter 3. The controller takes torque

commands for each joint and the joint level servo control runs at more than 1 kHz

for a good haptic performance. The middle level controller (e.g., kinematics) runs at

500 Hz and provides a ROS interface through a cisst-to-ROS bridge component.

A 7 Degrees Of Freedom (DOF) WAM robot is used as the slave device, emulating

the servicing robotic arm in space, as shown in Figure 5.5. The WAM robot is

mounted vertically on a bench built with frames from 80/20 R⃝ Inc. Cutting is

performed with a steel cutting tool manufactured by JWB manufacturing, Tempe,

AZ with a shape and size designed based on a titanium cutting blade used by NASA

Goddard Space Flight Center’s RRM operation. A six-axis force-torque sensor (JR3

Inc., Woodland, CA) is mounted between the WAM wrist palm link and the cutting

blade mount to get contact force measurement on the cutter and to enable active force

control in the direction of the plane normal. The WAM robot is controlled using the

Orocos Real Time Toolkit (RTT) [11] at 1 kHz.

The master and slave control PCs are connected in a local network and commu-

nication between them, including video and telemetry, is accomplished via ROS mes-

sages. The uplink, downlink and video delay that exist in the teleoperation between

Earth and the satellite are implemented with the TimeSequencer filter from the ROS

155

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

Stereo
Camera

JR3 Force
Sensor

Cutting
Blade

Kapton
Tape

Figure 5.4: Cutting test setup including JR3 force sensor, cutting blade, Kapton
tape and the stereo camera rig.

message_filters package. Delay configuration is described in the next subsection.

Our vision system consists of two SONY lipstick cameras (see Figure 5.4). A

stereo camera calibration procedure is performed to obtain the camera intrinsic pa-

rameters that are later used for image rectification. The rectified stereo video with

augmented reality overlays, generated with RViz (wiki.ros.org/rviz), are delayed and

then displayed to the user in the dVRK master console stereo viewer.

For the cutting experiments, we used mockup MLI blankets constructed from

representative industrial materials (Kapton tape, McMaster 7648A34) that resemble

the physical properties of the space-qualified MLI materials (Figure 5.4). A total

of 6 test strips are mounted on an aluminum plate in two layers. The design and

construction of the mockup is described in detail by Vozar et al. [93].

156

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

Stereo Viewer

Footpedal Tray
IEEE-1394
Controller

da Vinci Master Tool
Manipulators (MTMs)

WAM

Figure 5.5: da Vinci master console (left). A Barrett Whole Arm Manipulator
(right) robot shown with the test blanket setup.

157

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

5.4.2 Test Conditions

Teleoperation from Earth to space is subject to signal delays both uplink and

downlink due to radio frequency (RF) signal time-of-flight propagation delays and, in

most cases, the encoding/decoding and software delays in using the relaying system,

such as NASA’s advanced Tracking and Data Relay Satellite System (TDRSS) [10].

The telemetry and video data have different payload sizes and can have different

delays due to the possible use of different communication routes, the compression

and decompression of video data and other bandwidth induced latency. For example,

the European Space Agency’s (ESA’s) HAPTICS-2 experiment [12] is reported to

utilize a low-latency S-band link for telemetry data through the Russian module on

the International Space Station (ISS) in addition to video transfers via the regular Ku-

band communication through TDRSS. This link is direct line-of-sight communication

and features little transmission delay, but has limited bandwidth and therefore is not

suitable for transmitting large data such as videos. Even when telemetry and video

data are transmitted via the same route, they can have very different delays. Bohren

et al. [8] reported an average telemetry delay of 200 ms and average video delay of

2 s with peaks up to 6 s in a transatlantic teleoperation experiment. To evaluate how

the different telemetry and video delays may affect the proposed strategy, two delay

configurations are used. Table 5.2 summarizes the three test conditions used in this

study. These conditions differ in control modes as well as delay configurations.

The first condition is the Freehand mode. In this mode, the user only has delayed

158

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

Table 5.2: Test conditions

Condition Mode Uplink (s) Downlink (s) Video (s)
1 Freehand 0.5 0.5 3.5
2 Assisted 0.5 0.5 3.5
3 Assisted 0.0 4.0 4.0

video feedback and a text displaying the Z axis of the delayed force measurement in the

upper right corner of the screen. The basic teleoperation scheme described in Section

5.3 is employed, where the user manually controls all 6-DOF of the slave cutter. A

safety monitor is deployed at the remote end. It monitors the force measurement and

turns off the PID controller, such that the WAM controller only outputs joint torques

for gravity compensation, which is considered to be a safe mode. The user is notified

when the safety monitor triggers and can resume telemanipulation by repressing the

ENABLE pedal. In terms of delay, a round-trip 1 second telemetry delay (uplink 0.5s,

downlink 0.5s) and a 3.5 second video delay configuration is used. This is equivalent

to the the overall 4s delay used in our previous work.

The assistance mode is enabled for both the second and third test conditions. In

this mode, all the features including predictive display, hybrid position/force con-

troller, plane virtual fixture, line virtual fixture and task monitoring are available

to the user. The user can choose whether to use the line virtual fixture. The only

difference between these two test conditions lies in the delay configuration. While

the teleoperation performance is reported to be independent of the delay location

(e.g., uplink vs. downlink) [84], the different delay configurations can possibly make

a difference because the force text display and the task monitoring feedback are only

159

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

delayed by 0.5s in the second condition and by 4s in the third condition. Also, the

model update block only uses telemetry information and thus can update the slave

model faster when the round trip telemetry delay is 1s.

5.4.3 Procedure

The user study was performed with volunteer users recruited from a population

of graduate and undergraduate students at JHU and with variable experience in tele-

operated robotic operation. Tests were approved by the JHU Homewood Institutional

Review Board (HIRB00000701). A total of 12 participants, all right-handed, com-

pleted the trials (10 male, 2 female). All volunteers have no neurological disorders nor

physical conditions that may negatively affect performance. Volunteers each received

a $15 USD Amazon gift card for their participation.

The experiment was divided into four parts: an introduction section, a training

and practice section, an experiment section and a subjective evaluation section. After

finishing the pre-experiment survey, the user was given a brief introduction of the task

background, the master and slave robots used in the experiment, and the task setup.

The practice section starts with the user operating in freehand mode to finish the

approach sub-task (i.e., position the cutter in the tape seam) and cut half of the tape

seam. Then, all the capabilities of the assisted system and their related user interface

are introduced. After each capability is explained, the user gets the opportunity to

practice it right away; this ensures that the user can learn and properly understand

160

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

the feature and its user interface. After all the features are taught, the user is allowed

to cut the remaining half of the practice strip in assisted mode.

Trials were then performed. The robot was positioned 1 inch above the cutting

start line, which was indicated with a white line (see Figure 5.4). The test strip was

pre-punched because the punch sub-task is a difficult task that requires training and

we did not want to extend our trial to more than 90 minutes. The user then moved

the cutter underneath the tape (approach sub-task) and cut from the start line to the

finish line (also marked by a white line). The user completed a NASA TLX survey

[33] after each test condition and a subjective evaluation questionnaire at the end of

the entire trial. On average, the study took 90 minutes to complete.

5.4.4 Metrics

The states of the master and slave robots (500 Hz), video feeds (including aug-

mented reality overlays) of the stereo cameras (30 Hz), task states (model updates)

and foot pedal events were logged for all trials. The task completion time and operator

workload were analyzed statistically. We did not conduct the edge roughness analy-

sis, described in [93], as it is less relevant to the task compared with task completion

time and operator workload.

161

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

5.5 Results and Discussion

The results for the multi-user study are reported here, together with a discussion

of the results. A paired t-test is used for statistical analysis of task completion and

operator workload.

5.5.1 Task Completion Time

The total task completion time starts from the moment the user starts moving

the da Vinci MTM to the moment the cutter passes the finish line. The approaching

sub-task and cutting sub-task are timed and analyzed separately. If an adverse event

occurs during the cutting, the time spent to manually move the cutter out and re-

position it is excluded from the cutting time. Defining or redefining the line virtual

fixture is considered as part of the cutting sub-task and thus is timed.

The boxplot shown in Figure 5.6 summarizes the cutting sub-task completion

time. The mean task completion time was 198.5s for freehand mode (Condition 1)

compared with 145.25s for assisted mode with 1s telemetry delay (Condition 2) and

164.5s for assisted mode with 4s telemetry delay (Condition 3). There is a statistically

significant difference between the freehand mode and assisted mode with 1s telemetry

delay (p<0.01, power=0.858). However, the difference is not significant between the

freehand mode and assisted mode with 4s telemetry delay (p=0.166, power=0.273).

162

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

Condition1 Condition2 Condition3

100

150

200

250

300

350

T
im

e
 (

s
)

Figure 5.6: Boxplots showing the task completion time of the cutting sub-task for
each test condition. For all boxplots in this chapter, the red centerline represents
the median, the upper and lower edge of each box corresponds to 25th and 75th
percentiles, and the whiskers extend to the most extreme data points. The red cross
points are considered outliers [28]

163

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

5.5.2 Operator Workload

The boxplot shown in Figure 5.7 summarizes the overall workload (the sum of

the responses to all categories). The mean workload for the freehand condition was

23.08 compared with 13.75 for the assisted mode (condition 2) with the same delay

condition and a paired t-test reveals that the effect of assistance is significant (p =

0.00021, power = 0.9983). The effect of different delay configurations in assisted

mode is also investigated by comparing condition 2 and condition 3 data and the

result shows that there is no significant difference of operator workload (p = 0.91504,

power = 0.0511).

The radar plot in Figure 5.8 shows the mean values of each workload category in

the NASA TLX survey for each test condition. The assistance mode resulted in less

workload than the freehand mode in all categories, regardless of delay configuration.

Responses for the assisted mode with different delay configurations are fairly close in

all categories.

Table 5.3 summarizes the paired t-test results. The overall workload is significantly

different between freehand and assisted mode with 3.5s video delay, so are all the

individual categories except for temporal. It is interesting to discover that the users

did not perceive a significant difference in terms of time, but the analysis of task

completion time did show a significant difference. Different delay configurations did

not result in statistically significant differences in assistance mode.

164

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

Table 5.3: Paired t-test results of operator workload

Condition 1 vs. Condition 2 Condition 2 vs. Condition 3
h p-value power h p-value power

Overall 1 0.0002 0.9983 0 0.9150 0.0511
Mental 1 0.0004 0.9949 0 0.1661 0.2732

Physical 1 0.0024 0.9456 0 0.1911 0.2468
Temporal 0 0.1360 0.3122 0 0.5863 0.0807

Performance 1 0.0063 0.8637 0 0.5863 0.0807
Effort 1 0.0014 0.9707 0 0.2750 0.1829

Frustration 1 0.0008 0.9869 0 0.1911 0.2468

Condition1 Condition2 Condition3

10

15

20

25

30

35

T
o

ta
l
T

L
X

 W
o

rk
lo

a
d

,
ra

n
g

e
:
6

-4
2

Figure 5.7: Boxplots showing the total operator workload as self-reported via the
NASA TLX survey for each test condition.

165

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

Mental

PhysicalTemporal

Performance

Effort Frustration

1

7

Condition1

Condition2

Condition3

Figure 5.8: NASA TLX survey radar plot of average categorical workload as self-
reported by the users. Workloads increase from the center (1 to 7).

5.5.3 Adverse Events

Here we examine adverse events that occurred under each task condition. Two

types of adverse events occurred during the study: (1) failing to position the cutter

in the approaching sub-task, and (2) bunching during the cutting sub-task. In total,

there are 6 occurrences: 2 approaching sub-task failures and 4 bunching events. All 2

failures in the approaching sub-task happened during the freehand operation due to

the fact that the users were not able to align the cutter and constantly triggered the

safety threshold. 3 out of 4 bunching events occurred in the assistance mode with the

line virtual fixture defined and 1 occurred in freehand mode. Further investigation

is required to understand why all bunch events in assisted mode happened when the

166

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

line virtual fixture was utilized.

5.5.4 Subjective Evaluation

While statistically all the assistance features are evaluated as an integrated system,

some user feedback gave hints on how each feature helped them to complete the task.

One user pointed out that the predictive cutter display also works as a visual feedback

that helps the operator to avoid unintentional motion of the master manipulator.

Another user stated that the haptic plane was helpful both during the approaching

sub-task and in the cutting sub-task as he was more confident in taking bigger steps.

Users also gave some suggestions on system implementation. One user suggested

to have an attractive force in the plane virtual fixture to keep the hand on the plane.

Another user suggested to display a translucent overlay of the line virtual fixture

once set. There was also feedback that constantly pressing a foot pedal to enable

teleoperation was a little taxing.

5.5.5 Discussion

5.5.5.1 Line Virtual Fixture

In trials using assistance, the users were told that the line VF feature is an optional

feature and they can decide whether to use it. 9 out of 12 users used this feature

(16 out of 24 assisted trials). The proposed user interface for defining a line virtual

167

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

Freehand

Assisted with Line VF ON

Bunch

Figure 5.9: Comparison of tape cutting result from one user between freehand mode
(top) and assisted mode with line VF turned on (bottom).

fixture is effective in terms of time. For trials using the line VF, average time spent on

defining the VF is only 6.5% of the total cutting time. However, the effect of the line

virtual fixture seems to be unclear. Figure 5.9 shows a cutting tape strip from user 10.

The edge of the tape is much smoother when using the line virtual fixture compared

with freehand mode. But on the other hand, all bunch events during assisted mode

were with the line virtual fixture.

5.5.5.2 Task Monitor

Despite the use of a simple model with fixed parameters, the Task Monitor worked

well and was able to detect all the bunch events. There were two occasions where the

Task Monitor produced a false positive. One of them happened right after a bunch

event and the other one was when the cutter did not fully cut into the tape, but did not

result in an actual bunch event. However, we noticed that users who encountered the

bunch event did not pay attention to the displayed state (text overlay) and continued

168

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

cutting. This is partly because we did not specifically ask the user to stop when he/she

sees the warning, and partly because the user was not able to see the condition clearly

due to the limited video quality. In the future, this Task Monitor would be used to

automatically abort task execution on the slave side to prevent further damage.

5.5.5.3 Cutting Strategy

When delayed video is the only feedback to the user, a move-and-wait strategy is

commonly used [26]. For the 12 users, the mean wait time was 82.07 s for freehand

mode and 63.66s for assisted mode. However, the difference is not statistically signif-

icant for this number of trials. Figure 5.10 shows representative velocity profiles from

User 03. In freehand mode, the user clearly used the move-and-wait strategy and

took a lot of small steps during the cut. The total wait time was 108.10 s (51.97%

of the cut time). With the assistance mode (line VF turned on), the user took larger

steps and only spent 45.12 s waiting.

Users seem to use different cutting strategies (compression versus tension-based)

depending on test conditions. In the assistance mode, the HPFC used a compression-

based approach. However, in freehand mode, 7 out of the 12 users chose (intention-

ally or unintentionally) the tension-based approach. No tearing error related to the

tension-based approach was observed.

169

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

0 50 100 150 200
0

2

4

6

V
e
l
(m

m
/s

) Assisted

0 50 100 150 200

Time (s)

0

2

4

6

V
e
l
(m

m
/s

) Freehand

Define Line VF

Figure 5.10: Velocity profile of trials from user 03: bottom is from freehand mode
and top is from assistance mode (condition 2)

170

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

5.5.5.4 Other observations

The performance of assistance mode heavily depends on training. There are also

two users who spent more than 5 minutes but failed to position the cutter underneath

the tape seam in freehand mode. Both of them successfully completed the task in a

second trial.

5.6 Conclusions

This chapter has described the model-based telemanipulation framework. Al-

though a few parts of the framework such as the model-based teleoperation had been

presented before, we integrated a system that comprises all the previously proposed

components and added a new component that enables the operator to define and

adjust the line virtual fixture. We also added an augmented overlay of the measured

force and task monitor output. This system allowed us to perform a multi-user study

to verify our belief that a model-based method may perform poorly unless it contains

a critical set of features. Compared with the previous study by Vozar et al. [93]

that evaluated a specific feature, this study evaluates whether the assistance system

provides a benefit with respect to a baseline case of no assistance. The results of the

user study indicate that assistance can significantly reduce task completion time and

overall operator workload.

This application is another demonstration of the effectiveness of the proposed

171

CHAPTER 5. APPLICATION TO TELEOPERATED SPACE ROBOTICS

architecture. Although Xia et al. [99] discussed rendering haptic feedback with a

virtual fixture, the haptic feedback feature was not enabled in subsequent user studies

due to delay between the teleoperation node and the master control node, as they

were running on two separate computers. Using the proposed architecture, we can

not only render the haptic feedback efficiently, but also run other components such as

augmented reality and the teleoperation logic via a high level interface on the same

computer.

One limitation of the work is the sample size, which did not allow us to conclude

statistical significance in some cases. The other limitation is that due to the time

constraint, some users were not able to fully master all the assistance features and

were not using the system in the designed manner. Also, the punching sub-task was

not included in the experiment for the same reason. Future work could include an

evaluation of the impact of degraded force sensor feedback (as would be expected

if operated in space) and a comparison of the impact of different features on task

performance. Similarly, we recognize that computer vision techniques can be em-

ployed as sensory feedback for updating the line virtual fixture model and improving

augmented reality performance.

172

Chapter 6

Conclusions

This thesis discusses the development of a scalable and real-time capable infras-

tructure to support high-performance control of high degrees-of-free systems, with the

open source da Vinci Research Kit as the driving platform. The proposed architecture

involved the design of an efficient broadcast-based FireWire protocol, the choice and

implementation of a component-based multi-threaded software structure that maxi-

mizes performance. The timing performance of the proposed FireWire protocol has

been measured, analyzed and compared to the state-of-the-art EtherCAT implemen-

tation. The architecture has also been demonstrated on the da Vinci Research Kit

and applied in two semi-autonomous applications in the medical and space robotics

domains. This chapter summarizes each chapter, discusses the thesis contributions

and points out possible future works.

173

CHAPTER 6. CONCLUSIONS

6.1 Summary of chapters

Chapter 1 gave an introduction of the multi-arm and high degrees-of-freedom da

Vinci Research Kit platform and analyzed the challenges of designing a scalable and

high performance architecture for such a system.

Chapter 2 focused on the hardware and firmware aspects of the proposed architec-

ture. First, we reviewed the historical context that led to the selection of a distributed

architecture based on the IEEE-1394a fieldbus. The initial protocol required one read

and one write asynchronous FireWire transaction and did not scale well to a system

with 39 DOF. To overcome this limitation, a broadcast-based communication proto-

col was proposed for scalable real-time performance. This protocol improved timing

performance by reducing the number of transactions from the control PC to three,

regardless of the number of slave nodes on the bus. The I/O time of a full dVRK

drops from over 700 µs to less than 200 µs. To further evaluate the performance of the

proposed protocol, a comparison study with EtherCAT was presented. The proposed

protocol showed comparable performance and is projected to outperform EtherCAT

in large systems. To support the more prevalent Ethernet interface while minimizing

hardware modification, an Ethernet-to-FireWire bridge design was introduced.

Chapter 3 presented a software architecture that supports high-performance, low-

level control as well as flexible, high-level ROS-based multi-process control. The archi-

tecture includes a distributed hardware interface via a high-bandwidth, low-latency

fieldbus, the use of a real-time component-based framework with multi-threading and

174

CHAPTER 6. CONCLUSIONS

thread-safe shared memory communication, and bridge components that provide in-

terfaces between the real-time component-based framework and other systems such

as ROS. The novel aspect of this architecture is that it presents each robot as an

independent entity, even though they share resources such as a single communication

bus and single thread for low-level control. This software was specifically used for the

dVRK, but could be more generally applied to other robot systems.

Chapter 4 presented an application of the high-performance architecture to a sur-

gical semi-autonomous teleoperation application. In this application, we developed

virtual fixtures for the needle passing and knot tying sub-tasks of suturing. The vir-

tual fixtures were implemented on the dVRK and tested with a multi-user study to

verify their effectiveness. The experiment showed that the proposed virtual fixtures

can improve needle passing exit accuracy, thus reducing tissue tearing pressure, and

reduce the average knot tying task completion time and number of slips during the

task. Although the virtual fixture used in the knot tying task is a simple constraining

plane virtual fixture, it is a two-handed virtual fixture and illustrated the poten-

tial importance of such coordinated virtual fixtures in such tasks. This application

involved four arms and a camera system. The proposed architecture provided a high-

performance platform for the haptic rendering of virtual fixtures, as well as a ROS

interface to develop behavior logic code in a fast manner.

Chapter 5 showed another application in the space robotics field. This chapter

described the model-based teleoperation framework. The research contribution is the

175

CHAPTER 6. CONCLUSIONS

line virtual fixture together with a user interface that allows the user to define and

adjust it on-the-fly. The chapter also reported the results of a multi-user study to

compare the performance of assistance and freehand modes in a satellite servicing

teleoperation task under 4 seconds communication delay. The results showed that

the assistance can reduce the operator’s workload. This application utilized the ar-

chitecture, particularly the dVRK master console as the master input device, virtual

fixture rendering interface, and the display for augmented video signals. The user

study, however, is limited by the sample size.

6.2 Discussion and Future Work

The major contribution of this thesis is the architecture comprised of both the

FireWire communication protocol and the software architecture that interfaces to

the hardware. Although it was designed and implemented on the dVRK, it can be

applied to other robot systems.

The two applications of this architecture towards semi-autonomous teleoperation

demonstrated that the proposed architecture can support complex systems using

multiple arms and is able to efficiently render haptic feedback at multiple kilo-hertz.

However, an evaluation that focuses on the specific applications enabled by the hard

real-time and ultra-high update frequency could be conducted.

Regarding the suturing application, one future research direction is on the haptic

176

CHAPTER 6. CONCLUSIONS

rendering mechanism. In the current framework, the force and torque representation

are decoupled and specified independently. A coupled representation with full 6

DOF can be used to represent renderings that require simultaneous positional and

rotational haptic cues. Another direction is to explore different virtual fixtures for

the suturing task.

177

Appendix A

Appendix: How to Compile RTnet

and Xenomai

In Chapter 2, we presented EtherCAT timing performance collected on a Xenomai

patched Linux computer with the RTnet [52] Ethernet driver. Here we document how

to setup a test computer and collect timing data.

Xenomai [29] provides a real-time extension kernel that is seamlessly integrated

into Linux. In the test setup, Xenomai 2.6.3 and Linux kernel 3.5.7 are used. A

tutorial showing how to patch, configure, compile and install a Xenomai-patched

Linux kernel is available from Bohren [7].

RTnet [52] is an open-source, real-time networking framework for Xenomai-patched

Linux. As the standard Ethernet protocol is non-deterministic, RTnet avoids unpre-

dictable collisions and congestions using an additional protocol layer called RTmac,

178

APPENDIX A. APPENDIX: HOW TO COMPILE RTNET AND XENOMAI

which controls the medium access. However, when used for real-time robot control

applications, the connection between the control PC and the robot is typically a

point-to-point connection; therefore, the use of RTmac is not necessary, and RTnet

should be configured accordingly.

For this thesis work, RTnet 0.9.13 was used. To install RTnet, download RT-

net 0.9.13 from www.rtnet.org, install libncurses5-dev using apt-get, then use

make menuconfig to start configuration. In the build configuration step, select

Xenomai, TCP Support, drivers (e.g., New Intel Pro/1000 for Intel network card),

Real-Time Capturing Support and optionally RTnet Application Examples. Af-

ter configuration, call make to compile RTnet and then sudo make install to install

the RTnet framework. An installation tutorial is also available in [36]. By default,

a script rtnet is used to start and stop the RTnet driver stack with RTmac enabled

by default. For our application, please use the bash script start_rtnet.sh to start

RTnet. The script assumes the use of an Intel network card. If a different network

card is used, an update to the default Linux network card driver module name and

the RTnet real-time driver module name is required. In addition, update the MAC

address in the last line of the script to match the network card in use.

SOEM is an open-source EtherCAT master stack. A version with Xenomai sup-

port is available at https://github.com/zchen24/SOEM/tree/thesis. Use CMake to

configure and then compile the stack. An executable thesis is available to collect

timing data.

179

https://github.com/zchen24/SOEM/blob/thesis/start_rtnet.sh

Bibliography

[1] N. Ahmidi, L. Tao, S. Sefati, Y. Gao, C. Lea, B. Bejar, L. Zappella, S. Khudan-

pur, R. Vidal, and G. D. Hager. A dataset and benchmarks for segmentation

and recognition of gestures in robotic surgery. IEEE Transactions on Biomedical

Engineering, 2017.

[2] D. Anderson. FireWire System Architecture. MindShare, Inc., Addison-Wesley,

second edition, 1999.

[3] G. Baltazar and G. P. Chapelle. Firewire in modern integrated military avionics.

IEEE Aerospace and Electronic Systems Magazine, 16(11):12–16, 2001.

[4] Barrett Technology, LLC. The Whole Arm Manipulator CAN message format.

Technical report, Barrett Technology, LLC, 2012.

[5] J. Baumgartner and S. Schoenegger. POWERLINK and real-time Linux: A

perfect match for highest performance in real applications. In 12th Real-Time

Linux Workshop, 2010.

180

BIBLIOGRAPHY

[6] R. Bischoff, J. Kurth, G. Schreiber, R. Koeppe, A. Albu-Schäffer, A. Beyer,

O. Eiberger, S. Haddadin, A. Stemmer, G. Grunwald, et al. The KUKA-

DLR lightweight robot arm-a new reference platform for robotics research and

manufacturing. In ISR 2010 (41st International Symposium on Robotics) and

ROBOTIK 2010 (6th German Conference on Robotics), pages 1–8, Munich,

Germany, June 2010.

[7] J. Bohren. Xenomai on Ubuntu 12.04 (LTS) – A Xenomai tutorial for roboti-

cists. http://jbohren.com/tutorials/2014-09-27-xenomai-precise/, Sept. 2014.

[8] J. Bohren, C. Papazov, D. Burschka, K. Krieger, S. Parusel, S. Haddadin, W. L.

Shepherdson, G. D. Hager, and L. L. Whitcomb. A pilot study in vision-based

augmented telemanipulation for remote assembly over high-latency networks.

In IEEE International Conference on Robotics and Automation (ICRA), pages

3631–3638. IEEE, 2013.

[9] J. Bohren, C. Paxton, R. Howarth, G. D. Hager, and L. L. Whitcomb.

Semi-autonomous telerobotic assembly over high-latency networks. In 11th

ACM/IEEE Interface Conference on Human-Robot Interaction (HRI), pages

149–156, March 2016.

[10] D. L. Brandel, W. A. Watson, and A. Weinberg. NASA’s advanced tracking

and data relay satellite system for the years 2000 and beyond. Proceedings of

the IEEE, 78(7):1141–1151, 1990.

181

BIBLIOGRAPHY

[11] H. Bruyninckx. Open robot control software: the OROCOS project. In IEEE

International Conference on Robotics and Automation (ICRA), volume 3, pages

2523–2528. IEEE, May 2001.

[12] M. Bualat, W. Carey, T. Fong, K. Nergaard, C. Provencher, A. Schiele,

P. Schoonejans, and E. Smith. Preparing for crew-control of surface robots

from orbit. In IAA Space Exploration Conference, pages 1–7, 2014.

[13] T. Carstens and G. Harris. Programming with pcap @ONLINE.

[14] J. Carstensen and A. Rauschenberger. Real-Time Extension to the Robot Op-

erating System. In ROS Conference, 2016.

[15] G. Cena, L. Seno, A. Valenzano, and S. Vitturi. Performance analysis of Ether-

net Powerlink networks for distributed control and automation systems. Com-

puter Standards and Interfaces, 31(3):566–572, 2009.

[16] P. Chalasani, L. Wang, R. Roy, N. Simaan, R. H. Taylor, and M. Kobilarov.

Concurrent nonparametric estimation of organ geometry and tissue stiffness

using continuous adaptive palpation. In IEEE International Conference on

Robotics and Automation (ICRA), pages 4164–4171, May 2016.

[17] Z. Chen, A. Deguet, R. Taylor, S. DiMaio, G. Fischer, and P. Kazanzides. An

open-source hardware and software platform for telesurgical robot research. In

182

BIBLIOGRAPHY

MICCAI Workshop on Systems and Arch. for Computer Assisted Interventions,

Sep 2013.

[18] Z. Chen, A. Deguet, R. Taylor, and P. Kazanzides. Software architecture of the

da Vinci Research Kit. In The First IEEE International Conference on Robotic

Computing, Taichung, Taiwan, Apr. 2017.

[19] Z. Chen and P. Kazanzides. Multi-kilohertz control of multiple robots via IEEE-

1394 (firewire). In IEEE International Conference on Technologies for Practical

Robot Applications (TePRA), pages 1–6. IEEE, April 2014.

[20] Z. Chen, A. Malpani, P. Chalasani, A. Deguet, S. S. Vedula, P. Kazanzides,

and R. H. Taylor. Virtual fixture assistance for needle passing and knot tying.

In IEEE International Conference on Intelligent Robots and Systems (IROS),

pages 2343–2350. IEEE, 2016.

[21] D.-L. Chow, R. Jackson, M. Cavusoglu, and W. Newman. A novel vision guided

knot-tying method for autonomous robotic surgery. In IEEE International Con-

ference on Automation Science and Engineering (CASE), pages 504–508, Aug

2014.

[22] N. T. Dantam, D. M. Lofaro, A. Hereid, P. Y. Oh, A. D. Ames, and M. Stilman.

The ach library: a new framework for real-time communication. IEEE Robotics

and Automation Magazine, 22(1):76–85, 2015.

183

BIBLIOGRAPHY

[23] A. Deguet, R. Kumar, R. Taylor, and P. Kazanzides. The cisst libraries

for computer assisted intervention systems. In MICCAI Workshop on Sys-

tems and Architecture for Computer Assisted Interventions, Midas Journal:

http://hdl.handle.net/10380/1465, Sep 2008.

[24] S. DiMaio and C. Hasser. The da Vinci research interface. In MICCAI Workshop

on Systems and Arch. for Computer Assisted Interventions, Midas Journal:

http://hdl.handle.net/10380/1464, July 2008.

[25] M. Farsi, K. Ratcliff, and M. Barbosa. An overview of controller area network.

Computing and Control Engineering Journal, 10(3):113–120, 1999.

[26] W. R. Ferrell. Delayed force feedback. Human Factors: The Journal of the

Human Factors and Ergonomics Society, 8(5):449–455, 1966.

[27] K. Fodero, H. King, M. J. Lum, C. Bland, J. Rosen, M. Sinanan, and B. Han-

naford. Control system architecture for a minimally invasive surgical robot. In

Proceedings of Medicine Meets Virtual Reality, pages 156–158, Long Beach, CA,

Jan 2006.

[28] M. Frigge, D. C. Hoaglin, and B. Iglewicz. Some implementations of the boxplot.

The American Statistician, 43(1):50–54, Feb. 1989.

[29] P. Gerum. Xenomai-implementing a RTOS emulation framework on

GNU/Linux. White Paper, Xenomai, page 81, 2004.

184

http://hdl.handle.net/10380/1465
http://hdl.handle.net/10380/1464

BIBLIOGRAPHY

[30] U. Hagn, R. Konietschke, A. Tobergte, M. Nickl, S. Jörg, B. Kübler, G. Passig,

M. Gröger, F. Fröhlich, U. Seibold, et al. DLR MiroSurge: a versatile system for

research in endoscopic telesurgery. International Journal of Computer Assisted

Radiology and Surgery, 5(2):183–193, 2010.

[31] U. Hagn, M. Nickl, S. Jörg, G. Passig, T. Bahls, A. Nothhelfer, F. Hacker,

L. Le-Tien, A. Albu-Schäffer, R. Konietschke, M. Grebenstein, R. Warpup,

R. Haslinger, M. Frommberger, and G. Hirzinger. The DLR MIRO: a versatile

lightweight robot for surgical applications. Industrial Robot: An International

Journal, 35(4):324–336, 2008.

[32] B. Hannaford, J. Rosen, D. Friedman, H. King, P. Roan, L. Cheng, D. Glozman,

J. Ma, S. N. Kosari, and L. White. Raven-II: An open platform for surgical

robotics research. IEEE Transactions on Biomedical Engineering, 60(4):954–

959, Apr. 2013.

[33] S. G. Hart. NASA-task load index (NASA-TLX); 20 years later. Proceedings

of the Human Factors and Ergonomics Society Annual Meeting, 50(9):904–908,

Oct. 2006.

[34] IEEE-1394 Working Group. IEEE Standard for a High Performance Serial Bus

and Amendments. IEEE Std 1394-1995, 1996.

[35] T. I. Incorporation. EtherCAT on Sitara AM335x ARM Cortex-A8 micropro-

cessors.

185

BIBLIOGRAPHY

[36] Institut des Systèmes Intelligents et de Robotique, Université Pierre et Marie

CURIE. RTnet setup on Xenomai. http://rtt-lwr.readthedocs.io/en/

latest/rtpc/rtnet.html. Accessed: 2017-10-25.

[37] Intuitive Surgical, Inc. The da Vinci Surgical System. https://

intuitivesurgical.com/products/davinci_surgical_system/. Accessed:

2017-10-25.

[38] R. C. Jackson and M. C. Cavusoglu. Needle path planning for autonomous

robotic surgical suturing. In IEEE International Conference on Robotics and

Automation (ICRA), pages 1669–1675. IEEE, May 2013.

[39] G. Jay and C. Crick. gscam ROS wiki, 2012.

[40] I.-K. Jung and S. Lim. An EtherCAT based control system for human-robot co-

operation. In 16th International Conference on Methods Models in Automation

Robotics (MMAR), pages 341–344. IEEE, Aug. 2011.

[41] M. Y. Jung, M. Balicki, A. Deguet, R. H. Taylor, and P. Kazanzides. Lessons

learned from the development of component-based medical robot systems. Jour-

nal of Software Engineering for Robotics (JOSER), 5(2):25–41, Sept. 2014.

[42] M. Y. Jung, A. Deguet, and P. Kazanzides. A component-based architecture for

flexible integration of robotic systems. In IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages 6107–6112. IEEE, Oct. 2010.

186

http://rtt-lwr.readthedocs.io/en/latest/rtpc/rtnet.html
http://rtt-lwr.readthedocs.io/en/latest/rtpc/rtnet.html
https://intuitivesurgical.com/products/davinci_surgical_system/
https://intuitivesurgical.com/products/davinci_surgical_system/

BIBLIOGRAPHY

[43] I. Kandaswamy, T. Xia, and P. Kazanzides. Strategies and models for cutting

satellite insulation in telerobotic servicing missions. In IEEE Haptics Sympo-

sium (HAPTICS), pages 467–472, Feb. 2014.

[44] H. Kang and J. T. Wen. Robotic knot tying in minimally invasive surgeries. In

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

volume 2, pages 1421–1426. IEEE, Oct. 2002.

[45] A. Kapoor, M. Li, and R. H. Taylor. Spatial motion constraints for robot

assisted suturing using virtual fixtures. In Medical Image Computing and

Computer-Assisted Intervention (MICCAI), pages 89–96. Springer, Oct. 2005.

[46] A. Kapoor, N. Simaan, and P. Kazanzides. A system for speed and torque con-

trol of DC motors with application to small snake robots. In IEEE International

Conference on Mechatronics and Robotics (MechRob), Aachen, Germany, Sept.

2004.

[47] A. Kapoor and R. H. Taylor. A constrained optimization approach to virtual

fixtures for multi-handed tasks. In IEEE International Conference on Robotics

and Automation (ICRA), pages 3401–3406. IEEE, May 2008.

[48] P. Kazanzides, Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor, and S. DiMaio.

An open-source research kit for the da Vinci R⃝ surgical robot. In IEEE Inter-

national Conference on Robotics and Automation (ICRA), May/June 2014.

187

BIBLIOGRAPHY

[49] P. Kazanzides and P. Thienphrapa. Centralized processing and distributed

I/O for robot control. In IEEE International Conference on Technologies for

Practical Robot Applications (TePRA), pages 84–88, Nov. 2008.

[50] J. Kerkes. Real-time ethernet. Embedded Systems Programming, 14(1):43–58,

2001.

[51] KINGSTAR. The Best Fieldbus For Your PLC: 5 Fieldbuses Compared For

Industry 4.0. Technical report, KINGSTAR, Waltham, MA, 2015.

[52] J. Kiszka, B. Wagner, Y. Zhang, and J. Broenink. RTnet-a flexible hard real-

time networking framework. In IEEE International Conference on Emerging

Technologies and Factory Automation (ETFA), Catania, Italy, Sep 2005.

[53] R. Konietschke, U. Hagn, M. Nickl, S. Jorg, A. Tobergte, G. Passig, U. Seibold,

L. Le-Tien, B. Kubler, M. Groger, et al. The DLR MiroSurge-a robotic system

for surgery. In IEEE International Conference on Robotics and Automation

(ICRA), pages 1589–1590. IEEE, May 2009.

[54] N. Korver. Adequacy of the Universal Serial Bus for real-time systems. Technical

Report 009CE2003, University of Twente, 2003.

[55] W. F. Lages, D. Ioris, and D. C. Santini. An architecture for controlling the

Barrett WAM robot using ROS and OROCOS. In 41st Interaction Symposium

188

BIBLIOGRAPHY

on Robotics (ISR) and 8th German Conference on Robotics, pages 1–8. VDE,

2014.

[56] X. Li and P. Kazanzides. Parameter estimation and anomaly detection while

cutting insulation during telerobotic satellite servicing. In IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), pages 4562–4567.

IEEE, Sept./Oct. 2015.

[57] X. Li and P. Kazanzides. Task frame estimation during model-based teleoper-

ation for satellite servicing. In IEEE International Conference on Robotics and

Automation (ICRA). IEEE, May 2016.

[58] S.-Y. Lin, C.-Y. Ho, and Y.-Y. Tzou. Distributed motion control using real-time

network communication techniques. In Proceedings of the Third International

Power Electronics and Motion Control Conference (IPEMC), volume 2, pages

843–847. IEEE, Aug. 2000.

[59] M. J. Lum, D. C. Friedman, G. Sankaranarayanan, H. King, K. Fodero,

R. Leuschke, B. Hannaford, J. Rosen, and M. N. Sinanan. The RAVEN: Design

and validation of a telesurgery system. The International Journal of Robotics

Research, 28(9):1183–1197, 2009.

[60] P. Mantegazza, E. L. Dozio, and S. Papacharalambous. RTAI: Real Time Ap-

plication Interface. Linux Journal, 2000(72es), Apr. 2000.

189

BIBLIOGRAPHY

[61] T. H. Massie and K. J. Salisbury. PHANToM haptic interface: a device for

probing virtual objects. In Proceedings of the ASME Winter Annual Meet-

ing, Symposium on Haptic Interfaces for Virtual Environment and Teleoperator

Systems, pages 295–299, Chicago, IL, Nov. 1994.

[62] H. Mayer, F. Gomez, D. Wierstra, I. Nagy, A. Knoll, and J. Schmidhuber. A

system for robotic heart surgery that learns to tie knots using recurrent neural

networks. Advanced Robotics, 22(13-14):1521–1537, 2008.

[63] O. Mohareri, C. Schneider, and S. Salcudean. Bimanual telerobotic surgery with

asymmetric force feedback: A da Vinci R⃝ surgical system implementation. In

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 4272–4277. IEEE, Sept. 2014.

[64] A. Munawar and G. S. Fischer. Towards a haptic feedback framework for

multi-DOF robotic laparoscopic surgery platforms. In IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 1113–1118, Oct.

2016.

[65] A. Murali, S. Sen, B. Kehoe, A. Garg, S. McFarland, S. Patil, W. D. Boyd,

S. Lim, P. Abbeel, and K. Goldberg. Learning by observation for surgical sub-

tasks: Multilateral cutting of 3D viscoelastic and 2D orthotropic tissue phan-

toms. In IEEE International Conference on Robotics and Automation (ICRA),

pages 1202–1209. IEEE, May 2015.

190

BIBLIOGRAPHY

[66] N. T. Nguyen, K. L. Mayer, R. J. Bold, M. Larson, S. Foster, H. S. Ho, and B. M.

Wolfe. Laparoscopic suturing evaluation among surgical residents. Journal of

Surgical Research, 93(1):133–136, 2000.

[67] J. H. Peters, G. M. Fried, L. L. Swanstrom, N. J. Soper, L. F. Sillin, B. Schirmer,

K. Hoffman, S. F. Committee, et al. Development and validation of a com-

prehensive program of education and assessment of the basic fundamentals of

laparoscopic surgery. Surgery, 135(1):21–27, Jan. 2004.

[68] G. A. Pratt, P. Willisson, C. Bolton, and A. Hofman. Late motor process-

ing in low-impedance robots: Impedance control of series-elastic actuators. In

Proceedings of the American Control Conference, volume 4, pages 3245–3251,

Boston, MA, June 2004.

[69] G. Prytz. A performance analysis of EtherCAT and PROFINET IRT. In IEEE

International Conference on Emerging Technologies and Factory Automation

(ETFA), pages 408–415, Hamburg, Germany, Sept. 2008.

[70] L. Qian, Z. Chen, and P. Kazanzides. An Ethernet to FireWire bridge for

real-time control of the da Vinci Research Kit (dVRK). In 2015 IEEE 20th

Conference on Emerging Technologies & Factory Automation (ETFA), pages

1–7. IEEE, 2015.

[71] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J. Leibs, R. Wheeler,

191

BIBLIOGRAPHY

and A. Y. Ng. ROS: an open-source Robot Operating System. In ICRA Work-

shop on Open Source Software, volume 3, 2009.

[72] M. H. Raibert and J. J. Craig. Hybrid Position/Force Control of Manipulators.

Journal of Dynamic Systems, Measurement, and Control, 103(2):126–133, June

1981.

[73] S. G. Robertz, R. Henriksson, K. Nilsson, A. Blomdell, and I. Tarasov. Using

real-time java for industrial robot control. In Proceedings of the 5th Interna-

tional Workshop on Java Technologies for Real-time and Embedded Systems,

JTRES ’07, pages 104–110, New York, NY, USA, 2007. ACM.

[74] L. B. Rosenberg. Virtual fixtures: Perceptual tools for telerobotic manipulation.

In Proceedings of IEEE Virtual Reality Annual International Symposium, pages

76–82. IEEE, 1993.

[75] R. Rusu, I. Sucan, B. Gerkey, S. Chitta, M. Beetz, and L. Kavraki. Real-time

perception-guided motion planning for a personal robot. In IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), pages 4245–4252,

Oct. 2009.

[76] A. Ruszkowski, C. Schneider, O. Mohareri, and S. Salcudean. Bimanual tele-

operation with heart motion compensation on the da Vinci R⃝ Research Kit:

Implementation and preliminary experiments. In IEEE International Confer-

ence on Robotics and Automation (ICRA), pages 4101–4108. IEEE, May 2016.

192

BIBLIOGRAPHY

[77] J. Ruurda, I. Broeders, B. Pulles, F. Kappelhof, and C. Van der Werken. Manual

robot assisted endoscopic suturing: time-action analysis in an experimental

model. Surgical Endoscopy and Other Interventional Techniques, 18(8):1249–

1252, 2004.

[78] K. Salisbury, W. Townsend, B. Ebrman, and D. DiPietro. Preliminary design of

a whole-arm manipulation system (WAMS). In IEEE International Conference

on Robotics and Automation (ICRA), pages 254–260. IEEE, Apr. 1988.

[79] L. Santos and R. Cortesão. A dynamically consistent hierarchical control archi-

tecture for robotic-assisted tele-echography. In IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), pages 1990–1996. IEEE,

2014.

[80] M. Sarker, C. Kim, J. Cho, and B. You. Development of a network-based real-

time robot control system over IEEE 1394: using open source software platform.

In IEEE International Conference on Mechatronics, pages 563–568, July 2006.

[81] S. Schneider. Making Ethernet work in real time. Sensors Magazine, 17(11):22–

39, Nov. 2000.

[82] J. Schulman, A. Gupta, S. Venkatesan, M. Tayson-Frederick, and P. Abbeel. A

case study of trajectory transfer through non-rigid registration for a simplified

suturing scenario. In IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 4111–4117. IEEE, Nov. 2013.

193

BIBLIOGRAPHY

[83] S. Sen, A. Garg, D. V. Gealy, S. McKinley, Y. Jen, and K. Goldberg. Au-

tomating multi-throw multilateral surgical suturing with a mechanical needle

guide and sequential convex optimization. In IEEE International Conference

on Robotics and Automation (ICRA), pages 4178–4185. IEEE, May 2016.

[84] T. Sheridan. Space teleoperation through time delay: review and prognosis.

IEEE Transactions on Robotics and Automation, 9(5):592–606, Oct. 1993.

[85] P. Thienphrapa and P. Kazanzides. A distributed I/O low-level controller for

highly-dexterous snake robots. In IEEE Biomedical Circuits and Systems Con-

ference (BioCAS), pages 9–12, Baltimore, MD, Nov. 2008.

[86] P. Thienphrapa and P. Kazanzides. A scalable system for real-time control of

dexterous surgical robots. In IEEE International Conference on Technologies

for Practical Robot Applications (TePRA), pages 16–22, Woburn, MA, Nov.

2009.

[87] P. Thienphrapa and P. Kazanzides. Design of a scalable real-time robot con-

troller and application to a dexterous manipulator. In IEEE International

Conference on Robotics and Biomimetics (ROBIO), pages 2295–2300, Phuket,

Thailand, Dec. 2011.

[88] J. P. Thomesse. Fieldbus technology in industrial automation. Proceedings of

the IEEE, 93(6):1073–1101, June 2005.

194

BIBLIOGRAPHY

[89] Trade Association and others. FirewireTM reference tutorial. Technical report,

1394 Trade Association, 2010.

[90] M. A. Tsegaye. A comparative study of the Linux and Windows device driver

architectures with a focus on IEEE1394 (high speed serial bus) drivers. Master’s

thesis, Department of Computer Science, Rhodes University, Dec. 2002.

[91] S. S. Vedula, A. Malpani, N. Ahmidi, S. Khudanpur, G. Hager, and C. C. G.

Chen. Task-level vs. segment-level quantitative metrics for surgical skill assess-

ment. Journal of Surgical Education, 73(3):482–489, 2016.

[92] S. Vozar, Z. Chen, P. Kazanzides, and L. L. Whitcomb. Preliminary study of vir-

tual nonholonomic constraints for time-delayed teleoperation. In IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS), pages 4244–

4250. IEEE, Sept./Oct. 2015.

[93] S. Vozar, S. Leonard, P. Kazanzides, and L. L. Whitcomb. Experimental evalu-

ation of force control for virtual-fixture-assisted teleoperation for on-orbit ma-

nipulation of satellite thermal blanket insulation. In IEEE International Con-

ference on Robotics and Automation (ICRA), pages 4424–4431. IEEE, May

2015.

[94] S. Vozar, S. Leonard, L. L. Whitcomb, and P. Kazanzides. A testbed for evalu-

ating virtual-fixture-assisted teleoperation for on-orbit manipulation of satellite

195

BIBLIOGRAPHY

thermal blanket insulation. In The 3rd Telerobotics Workshop at IROS: Teler-

obotics for Real-Life Applications: Opportunities, Challenges, and New Devel-

opments, pages 16–20, Sept 2014.

[95] L. Wang, Z. Chen, P. Chalasani, R. M. Yasin, P. Kazanzides, R. H. Taylor,

and N. Simaan. Force-controlled exploration for updating virtual fixture geom-

etry in model-mediated telemanipulation. Journal of Mechanisms and Robotics,

9(2):021010, 2017.

[96] Willow Garage. PR2 Manual, 2010.

[97] T. Xia, A. Kapoor, P. Kazanzides, and R. Taylor. A constrained optimiza-

tion approach to virtual fixtures for multi-robot collaborative teleoperation. In

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 639–644. IEEE, Sept. 2011.

[98] T. Xia, S. Léonard, A. Deguet, L. Whitcomb, and P. Kazanzides. Augmented re-

ality environment with virtual fixtures for robotic telemanipulation in space. In

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 5059–5064, Oct. 2012.

[99] T. Xia, S. Léonard, I. Kandaswamy, A. Blank, L. Whitcomb, and P. Kazanzides.

Model-based telerobotic control with virtual fixtures for satellite servicing tasks.

In IEEE International Conference on Robotics and Automation (ICRA), pages

1479–1484, May 2013.

196

BIBLIOGRAPHY

[100] Y. Zhang, B. Orlic, P. Visser, and J. Broenink. Hard real-time networking

on firewire. In P. Marquet, N. McGuire, and P. Wurmsdobler, editors, 7th

Real-Time Linux Workshop, pages 1–8, Eindhoven, the Netherlands, 2005. IOP

Press.

[101] Y. Zhang, B. Orlic, P. Visser, and J. Broenink. Hard real-time networking on

FireWire. In RT Linux Workshop, Nov 2005.

197

Vita

Zihan Chen received the Bachelors of Science degree

in Control Science and Engineering and the Bachelors

of Arts degree in English Language and Literature in

2010, and the Masters of Science and Engineering de-

gree in Mechanical Engineering from Johns Hopkins

University in 2012. He enrolled in the Computer Sci-

ence Ph.D. program in 2012. His research focuses on

scalable, high-performance control system and semi-autonomous teleoperation.

198

	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	The da Vinci Research Kit (dVRK)
	Challenges of a scalable and high performance architecture for dVRK
	Overview of Architectures
	Proposed Approach
	Applications
	Broader Impact
	Overview of Contributions
	A broadcast-based fieldbus communication protocol
	A bridge design to enable real-time control over a conventional network
	An analytical model of the timing performance for the proposed protocols and EtherCAT
	A scalable and extensible software architecture
	Virtual fixtures for suturing and knot tying tasks
	Virtual fixtures for time-delayed teleoperation for satellite servicing

	System Architecture
	Introduction and Overview of Thesis Contributions
	Historical Context
	Fieldbus Survey
	Distributed I/O System
	Introduction to IEEE 1394
	FireWire Transactions Timing Performance
	System Performance
	Analysis

	Broadcast Communication Protocol
	Transmission model
	Bus optimizations
	System Characteristics
	Determinism
	Error tolerance
	Backward compatibility

	Experiments
	FPGA hardware-based measurement
	Model parameter estimation with PC software-based measurement

	Discussion

	Ethernet-to-FireWire Bridge for Real-time Control
	Introduction
	Ethernet-to-FireWire Bridge Design
	Prototype Bridge Board Design
	Frame Transmission Protocol
	Status Control
	Ethernet Software

	Experiments
	FireWire Transaction over Ethernet
	System Performance
	Cross-platform Capability
	Ethernet Bridge Timing Model

	Discussion

	Performance Comparison with EtherCAT
	Introduction to EtherCAT
	EtherCAT Timing Performance
	EtherCAT Timing Model
	Model Parameter Measurement
	EtherCAT Model Verification

	Time Performance Comparison on dVRK
	Discussion

	Conclusions

	Software Architecture
	Introduction
	Thesis Contributions
	Related Work
	Low-Level Hardware Interface Layer (Fieldbus)
	Real-time framework for robot control
	Design Goals
	Design Analysis
	Implementation

	System integration via ROS interfaces
	CISST to ROS Bridge
	ROS Ecosystem

	Discussion and Conclusion

	Application to Virtual Fixture Assisted Suturing
	Introduction
	Thesis Contributions
	Virtual Fixtures
	Task Description and Analysis
	Impedance Virtual Fixture
	Needle Passing Virtual Fixture
	Knot Tying Virtual Fixture

	Experiment
	System Implementation on da Vinci Research Kit
	Needle Passing Sub-task
	Knot Tying Sub-task
	Test Procedure
	Data Collection and Analysis

	Results and Discussion
	Needle Passing Sub-task
	Statistical Analysis
	Trajectory Analysis
	Operator Workload
	Subjective Evaluation

	Knot Tying Sub-task
	Errors (Number of Slips)
	Task completion and trajectory length
	Operator Workload
	Subjective Evaluation

	Summary and Future Work

	Application to Teleoperated Space Robotics
	Introduction
	Thesis Contributions
	Technical Approach
	Plane Virtual Fixture
	Hybrid Position/Force Controller and Registration Update
	Safety and Task Monitoring
	Line Virtual Fixture
	Predictive display

	User Study
	System Implementation
	Test Conditions
	Procedure
	Metrics

	Results and Discussion
	Task Completion Time
	Operator Workload
	Adverse Events
	Subjective Evaluation
	Discussion
	Line Virtual Fixture
	Task Monitor
	Cutting Strategy
	Other observations

	Conclusions

	Conclusions
	Summary of chapters
	Discussion and Future Work

	Appendix: How to Compile RTnet and Xenomai
	Vita

